Триакистетраэдр
Триакистетра́эдр (от др.-греч. τριάχις — «трижды», τέτταρες — «четыре» и ἕδρα — «грань»), также называемый тригон-тритетраэдром, — полуправильный многогранник (каталаново тело), двойственный усечённому тетраэдру. Составлен из 12 одинаковых тупоугольных равнобедренных треугольников, в которых один из углов равен а два других Имеет 8 вершин; в 4 вершинах (расположенных так же, как вершины правильного тетраэдра) сходятся своими острыми углами по 6 граней, в 4 вершинах (расположенных так же, как вершины другого правильного тетраэдра) сходятся тупыми углами по 3 грани. У триакистетраэдра 18 рёбер — 6 «длинных» (расположенных так же, как рёбра правильного тетраэдра) и 12 «коротких». Двугранный угол при любом ребре одинаков и равен Триакистетраэдр можно получить из правильного тетраэдра, приложив к каждой его грани правильную треугольную пирамиду с основанием, равным грани тетраэдра, и высотой, которая в раз меньше стороны основания. При этом полученный многогранник будет иметь по 3 грани вместо каждой из 4 граней исходного — с чем и связано его название. Метрические характеристикиЕсли «короткие» рёбра триакистетраэдра имеют длину , то его «длинные» рёбра имеют длину а площадь поверхности и объём выражаются как Радиус вписанной сферы (касающейся всех граней многогранника в их инцентрах) при этом будет равен радиус полувписанной сферы (касающейся всех рёбер) — Описать около триакистетраэдра сферу — так, чтобы она проходила через все вершины, — невозможно. Ссылки
|
Portal di Ensiklopedia Dunia