Удлинённая четырёхугольная пирамида
Удлинённая четырёхуго́льная пирами́да[1] — один из многогранников Джонсона (J8, по Залгаллеру — М2+П4). Составлена из 9 граней: 4 правильных треугольников и 5 квадратов. Каждая треугольная грань окружена одной квадратной и двумя треугольными; среди квадратных 1 грань окружена четырьмя квадратными, другие 4 — тремя квадратными и одной треугольной. Имеет 16 рёбер одинаковой длины. 8 рёбер располагаются между двумя квадратными гранями, 4 ребра — между квадратной и треугольной, остальные 4 — между двумя треугольными. У удлинённой четырёхугольной пирамиды 9 вершин. В 4 вершинах (расположенных как вершины квадрата) сходятся три квадратных грани; в 4 вершинах (расположенных как вершины другого квадрата) — две квадратных и две треугольных; в 1 вершине — четыре треугольных. Удлинённую четырёхугольную пирамиду можно получить из двух многогранников — куба и квадратной пирамиды, все рёбра у которой одинаковой длины (J1), — приложив основание пирамиды к одной из граней куба. Метрические характеристикиЕсли удлинённая четырёхугольная пирамида имеет ребро длины , её площадь поверхности и объём выражаются как В координатахУдлинённую четырёхугольную пирамиду с длиной ребра можно расположить в декартовой системе координат так, чтобы её вершины имели координаты При этом ось симметрии многогранника будет совпадать с осью Oz, а две из четырёх плоскостей симметрии — с плоскостями xOz и yOz. Заполнение пространстваС помощью удлинённых четырёхугольных пирамид и правильных тетраэдров можно замостить трёхмерное пространство без промежутков и наложений (см. иллюстрацию). Примечания
Ссылки
|