Грани додекаэдра Билинского — ромбы с отношением диагоналей, равным золотому сечению они несколько более вытянуты, чем грани ромбододекаэдра, представляющие собой ромбы с отношением диагоналей
Имеет 14 вершин. В 2 вершинах сходятся четыре грани своими острыми углами; в 4 вершинах сходятся три грани тупыми углами; в 4 вершинах сходятся одна грань острым углом и две тупыми; в 4 вершинах сходятся три грани острыми углами и одна тупым.
У додекаэдра Билинского 24 ребра равной длины. При 12 рёбрах (примыкающих к вершинам, отмеченным на рисунке красным) двугранные углы равны при 8 рёбрах (между зелёной и синей вершинами) — при 4 рёбрах (между чёрной и зелёной вершинами) —
При этом центр симметрии многогранника будет совпадать с началом координат, три оси симметрии — с осями Ox, Oy и Oz, а три плоскости симметрии — с плоскостями xOy, xOz и yOz.
Метрические характеристики
Если додекаэдр Билинского имеет ребро длины , его площадь поверхности и объём выражаются как
История
Впервые данный многогранник встречается под названием «додекаромб» в 1752 году на иллюстрации в книге английского математика Джона Лоджа Коули[англ.][2][3].
Заново найден в 1960 году хорватским математиком Станко Билинским[4], который назвал его «ромбическим додекаэдром второго рода»[5]. Открытие Билинского заполнило остававшийся незамеченным 75 лет пробел в классификации выпуклых многогранников с конгруэнтными ромбическими гранями, описанной Евграфом Фёдоровым[6].
Рассмотрим на иллюстрациях выше два отрезка: диагональ многогранника, соединяющую две синих вершины и диагональ грани, соединяющую красную вершину с зелёной
В додекаэдре Билинского эти отрезки не параллельны, в ромбододекаэдре же соответствующие им отрезки — параллельны. А поскольку аффинное преобразование сохраняет параллельность отрезков, получить один многогранник из другого при помощи аффинных растяжений и сжатий нельзя.
Примечания
↑У. Болл, Г. Коксетер. Математические эссе и развлечения. — М.: Мир, 1986. — Стр. 157.
↑John Lodge Cowley. Geometry Made Easy; Or, a New and Methodical Explanation of the Elements of Geometry. — London, 1752. — Plate 5, Fig. 16.
↑Coxeter, H. S. M. (1962), "The classification of zonohedra by means of projective diagrams", Journal de Mathématiques Pures et Appliquées, 41: 137–156, MR0141004.