Дельтоидальный гексеконтаэдр

Дельтоидальный гексеконтаэдр
(вращающаяся модель, 3D-модель)
(вращающаяся модель, 3D-модель)
Тип каталаново тело
Свойства выпуклый, изоэдральный
Комбинаторика
Элементы
60 граней
120 рёбер
62 вершины
Χ = 2
Грани дельтоиды:
Грань дельтоидального гексеконтаэдра
Конфигурация вершины 20(43)
30(44)
12(45)
Конфигурация грани V3.4.5.4
Двойственный многогранник ромбоикосододекаэдр
Классификация
Обозначения oD, deD
Группа симметрии Ih (икосаэдрическая)
Логотип Викисклада Медиафайлы на Викискладе

Дельтоида́льный гексеконта́эдр (от «дельтоид» и др.-греч. ἑξήκοντα — «шестьдесят», ἕδρα — «грань») — полуправильный многогранник (каталаново тело), двойственный ромбоикосододекаэдру. Составлен из 60 одинаковых выпуклых дельтоидов.

Имеет 62 вершины. В 12 вершинах (расположенных так же, как вершины икосаэдра) сходятся своими наименьшими углами по 5 граней; в 20 вершинах (расположенных так же, как вершины додекаэдра) сходятся своими наибольшими углами по 3 грани; в остальных 30 вершинах (расположенных так же, как вершины икосододекаэдра) сходятся своими средними по величине углами по 4 грани.

Имеет 120 рёбер — 60 «длинных» (вместе образующих нечто вроде «раздутого» остова икосаэдра) и 60 «коротких» (образующих «раздутый» остов додекаэдра).

Дельтоидальный гексеконтаэдр — одно из шести каталановых тел, в которых нет гамильтонова цикла[1]; гамильтонова пути для всех шести также нет.

Метрические характеристики и углы

Грань дельтоидального гексеконтаэдра

Если «короткие» рёбра дельтоидального гексеконтаэдра имеют длину , то его «длинные» рёбра имеют длину

Площадь поверхности и объём многогранника при этом выражаются как

Радиус вписанной сферы (касающейся всех граней многогранника в их инцентрах) при этом будет равен

радиус полувписанной сферы (касающейся всех рёбер) —

радиус окружности, вписанной в грань —

меньшая диагональ грани (делящая грань на два равнобедренных треугольника) —

бо́льшая диагональ грани (делящая грань на два равных треугольника) —

Описать около дельтоидального гексеконтаэдра сферу — так, чтобы она проходила через все вершины, — невозможно.

Наибольший угол грани (между двумя «короткими» сторонами) равен наименьший угол грани (между двумя «длинными» сторонами) два средних по величине угла (между «короткой» и «длинной» сторонами)

Двугранный угол при любом ребре одинаков и равен

Примечания

  1. Weisstein, Eric W. Графы каталановых тел (англ.) на сайте Wolfram MathWorld.

Ссылки

 

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia