January 1999 lunar eclipse
A penumbral lunar eclipse occurred at the Moon’s ascending node of orbit on Sunday, January 31, 1999,[1] with an umbral magnitude of −0.0258. It was a relatively rare total penumbral lunar eclipse, with the Moon passing entirely within the penumbral shadow without entering the darker umbral shadow.[2] A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A penumbral lunar eclipse occurs when part or all of the Moon's near side passes into the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring about 4.8 days after perigee (on January 26, 1999, at 21:25 UTC), the Moon's apparent diameter was larger.[3] VisibilityThe eclipse was completely visible over Asia and Australia, seen rising over much of Africa, Europe, and the Middle East and setting over western North America and the central Pacific Ocean.[4] Gallery
Eclipse detailsShown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[5]
Eclipse seasonThis eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Related eclipsesEclipses in 1999
Metonic
Tzolkinex
Half-Saros
Tritos
Lunar Saros 114
Inex
Triad
Lunar eclipses of 1998–2002This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[6] The penumbral lunar eclipses on March 13, 1998 and September 6, 1998 occur in the previous lunar year eclipse set, and the penumbral lunar eclipses on May 26, 2002 and November 20, 2002 occur in the next lunar year eclipse set.
Saros 114This eclipse is a part of Saros series 114, repeating every 18 years, 11 days, and containing 71 events. The series started with a penumbral lunar eclipse on May 13, 971 AD. It contains partial eclipses from August 7, 1115 through February 18, 1440; total eclipses from February 28, 1458 through July 17, 1674; and a second set of partial eclipses from July 28, 1692 through November 26, 1890. The series ends at member 71 as a penumbral eclipse on June 22, 2233. The longest duration of totality was produced by member 35 at 106 minutes, 5 seconds on May 24, 1584. All eclipses in this series occur at the Moon’s ascending node of orbit.[7]
Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
Half-Saros cycleA lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[9] This lunar eclipse is related to two annular solar eclipses of Solar Saros 121.
See alsoNotes
External links
Wikimedia Commons has media related to Lunar eclipse of 1999 January 31.
|
Portal di Ensiklopedia Dunia