January 1936 lunar eclipse
A total lunar eclipse occurred at the Moon’s descending node of orbit on Wednesday, January 8, 1936,[1] with an umbral magnitude of 1.0173. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 6.2 days before apogee (on January 14, 1936, at 23:50 UTC), the Moon's apparent diameter was smaller.[2] VisibilityThe eclipse was completely visible over eastern Europe, Asia, and western Australia, seen rising over Africa andwestern Europe and setting over eastern Australia, northwestern North America, and the central Pacific Ocean.[3] Eclipse detailsShown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]
Eclipse seasonThis eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Related eclipsesEclipses in 1936
Metonic
Tzolkinex
Half-Saros
Tritos
Lunar Saros 133
Inex
Triad
Lunar eclipses of 1933–1936This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5] The penumbral lunar eclipses on March 12, 1933 and September 4, 1933 occur in the previous lunar year eclipse set.
Saros 133This eclipse is a part of Saros series 133, repeating every 18 years, 11 days, and containing 71 events. The series started with a penumbral lunar eclipse on May 13, 1557. It contains partial eclipses from August 7, 1683 through December 17, 1899; total eclipses from December 28, 1917 through August 3, 2278; and a second set of partial eclipses from August 14, 2296 through March 11, 2639. The series ends at member 71 as a penumbral eclipse on June 29, 2819. The longest duration of totality will be produced by member 35 at 101 minutes, 41 seconds on May 30, 2170. All eclipses in this series occur at the Moon’s descending node of orbit.[6]
Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
Half-Saros cycleA lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two annular solar eclipses of Solar Saros 140.
See alsoNotes
External links
|