June 2123 lunar eclipse
A total lunar eclipse will occur at the Moon’s ascending node of orbit on Wednesday, June 9, 2123,[1] with an umbral magnitude of 1.7488. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 1.4 days after apogee (on June 7, 2123, at 19:20 UTC), the Moon's apparent diameter will be smaller.[2] This dramatic total eclipse, lasting 106 minutes and 6 seconds, will plunge the full Moon into deep darkness as it passes right through the center of the Earth's umbral shadow. While the visual effect of a total eclipse is variable, the Moon may be stained a deep orange or red colour at maximum eclipse. This will be a great spectacle for everyone who sees it. The partial eclipse will last for 3 hours and 56 minutes in total. The penumbral eclipse lasts for 6 hours and 14 minutes. This will be the longest total lunar eclipse since July 16, 2000 (106 minutes, 25 seconds), and the longest one until May 12, 2264 (106 minutes, 13 seconds) and July 27, 3107 (106 minutes, 21 seconds), though the eclipse on June 19, 2141 will be nearly identical in all aspects.[3] This will also be the longest of the 22nd century and the second longest of the 3rd millennium.[4] The eclipse on June 19, 2141 will be the second longest of the 22nd century and the third longest of the third millennium (at 106 minutes 5 seconds). VisibilityThe eclipse will be completely visible over eastern and central North America, South America, and Antarctica, seen rising over western North America, eastern Australia, and the central Pacific Ocean and setting over Europe, Africa, and the Middle East. Eclipse detailsShown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[5]
Eclipse seasonThis eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
Related eclipsesEclipses in 2123
Metonic
Tzolkinex
Half-Saros
Tritos
Lunar Saros 132
Inex
Triad
Lunar eclipses of 2121–2125
Saros 132Lunar saros series 132, repeating every 18 years and 11 days, has a total of 71 lunar eclipse events including 44 umbral lunar eclipses (32 partial lunar eclipses and 12 total lunar eclipses).
There are 11 series events between 1901 and 2100, grouped into threes (called an exeligmos), each column with approximately the same viewing longitude on earth.
Half-Saros cycleA lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[7] This lunar eclipse is related to two total solar eclipses of Solar Saros 139.
References
|