September 2043 lunar eclipse
A total lunar eclipse will occur at the Moon’s ascending node of orbit on Saturday, September 19, 2043,[1] with an umbral magnitude of 1.2575. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 2.8 days before perigee (on September 21, 2043, at 20:20 UTC), the Moon's apparent diameter will be larger.[2] This lunar eclipse is the second of a tetrad, with four total lunar eclipses in series, the others being on March 25, 2043; March 13, 2044; and September 7, 2044. VisibilityThe eclipse will be completely visible over South America, western Europe, and west Africa, seen rising over North America and setting over east Africa, eastern Europe, and west, central, and south Asia.[3] Eclipse detailsShown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]
Eclipse seasonThis eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Related eclipsesEclipses in 2043
Metonic
Tzolkinex
Half-Saros
Tritos
Lunar Saros 128
Inex
Triad
Lunar eclipses of 2042–2045This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5] The penumbral lunar eclipse on October 28, 2042 occurs in the previous lunar year eclipse set.
Saros 128Lunar saros series 128, repeating every 18 years and 11 days, has a total of 71 lunar eclipse events including 57 umbral eclipses (42 partial lunar eclipses and 15 total lunar eclipses). Solar Saros 135 interleaves with this lunar saros with an event occurring every 9 years 5 days alternating between each saros series.
Lunar Saros 128 contains 15 total lunar eclipses between 1845 and 2097 (in years 1845, 1863, 1881, 1899, 1917, 1935, 1953, 1971, 1989, 2007, 2025, 2043, 2061, 2079 and 2097). Solar Saros 135 interleaves with this lunar saros with an event occurring every 9 years 5 days alternating between each saros series. Tritos seriesThe tritos series repeats 31 days short of 11 years at alternating nodes. Sequential events have incremental Saros cycle indices. This series produces 20 total eclipses between April 24, 1967 and August 11, 2185, only being partial on November 19, 2021.
Half-Saros cycleA lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[7] This lunar eclipse is related to two annular solar eclipses of Solar Saros 135.
See alsoNotes
External links
|