March 2043 lunar eclipse
A total lunar eclipse will occur at the Moon’s descending node of orbit on Wednesday, March 25, 2043,[1] with an umbral magnitude of 1.1161. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 3.4 days before apogee (on March 29, 2043, at 1:30 UTC), the Moon's apparent diameter will be smaller.[2] This lunar eclipse is the first of a tetrad, with four total lunar eclipses in series, the others being on September 19, 2043; March 13, 2044; and September 7, 2044. VisibilityThe eclipse will be completely visible over east Asia, Australia, and the western Pacific Ocean, seen rising over central and east Africa, eastern Europe, and west, central, and south Asia and setting over much of North America.[3] Eclipse detailsShown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]
Eclipse seasonThis eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Related eclipsesEclipses in 2043
Metonic
Tzolkinex
Half-Saros
Tritos
Lunar Saros 123
Inex
Triad
Lunar eclipses of 2042–2045This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5] The penumbral lunar eclipse on October 28, 2042 occurs in the previous lunar year eclipse set.
Saros 123This eclipse is a part of Saros series 123, repeating every 18 years, 11 days, and containing 72 events. The series started with a penumbral lunar eclipse on August 16, 1087. It contains partial eclipses from May 2, 1520 through July 6, 1610; total eclipses from July 16, 1628 through April 4, 2061; and a second set of partial eclipses from April 16, 2079 through July 2, 2205. The series ends at member 72 as a penumbral eclipse on October 8, 2367. The longest duration of totality was produced by member 37 at 105 minutes, 58 seconds on September 20, 1736. All eclipses in this series occur at the Moon’s descending node of orbit.[6]
Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
Half-Saros cycleA lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two total solar eclipses of Solar Saros 130.
See alsoReferences
External links
|