December 1946 lunar eclipse
A total lunar eclipse occurred at the Moon’s ascending node of orbit on Sunday, December 8, 1946,[1] with an umbral magnitude of 1.1639. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring only about 6.5 hours before perigee (on December 9, 1946, at 0:15 UTC), the Moon's apparent diameter was larger.[2] This lunar eclipse was the last of an almost tetrad, with the others being on June 25, 1945 (partial); December 19, 1945 (total); and June 14, 1946 (total). VisibilityThe eclipse was completely visible over central and eastern Europe, northeast Africa, Asia, and western Australia, seen rising over much of Africa and western Europe and setting over eastern Australia and northwestern North America.[3] Eclipse detailsShown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]
Eclipse seasonThis eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Related eclipsesEclipses in 1946
Metonic
Tzolkinex
Half-Saros
Tritos
Lunar Saros 134
Inex
Triad
Lunar eclipses of 1944–1947
Saros 134It was part of Saros series 134. Half-Saros cycleA lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[5] This lunar eclipse is related to two total solar eclipses of Solar Saros 141.
See alsoNotes
External links
|