May 2170 lunar eclipse
A total lunar eclipse will occur at the Moon’s descending node of orbit on Wednesday, May 30, 2170,[1] with an umbral magnitude of 1.7488. It will be a central lunar eclipse, in which part of the Moon will pass through the center of the Earth's shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 3.6 days after perigee (on May 26, 2170, at 10:15 UTC), the Moon's apparent diameter will be larger.[2] This will be the greatest lunar eclipse of Lunar Saros 133 as well as the largest and darkest lunar eclipse of the 22nd century.[3] VisibilityThe eclipse will be completely visible over central and eastern South America, western Europe, and much of Africa, seen rising over western South America and much of North America and setting over eastern Europe, the western half of Asia, and western Australia. Eclipse detailsShown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]
Eclipse seasonThis eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
Related eclipsesEclipses in 2170
Metonic
Tzolkinex
Half-Saros
Tritos
Lunar Saros 133
Inex
Triad
Lunar eclipses of 2168–2172This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5] The lunar eclipses on January 24, 2168 (partial), July 20, 2168 (penumbral), and January 13, 2169 (penumbral) occur in the previous lunar year eclipse set, and the penumbral lunar eclipses on April 9, 2172 and October 2, 2172 occur in the next lunar year eclipse set.
Saros 133Lunar saros series 133, repeating every 18 years and 11 days, has a total of 71 lunar eclipse events including 54 umbral lunar eclipses (33 partial lunar eclipses and 21 total lunar eclipses).
There are 10 series events between 1901 and 2100, grouped into threes (called an exeligmos), each column with approximately the same viewing longitude on Earth.
Half-Saros cycleA lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[6] This lunar eclipse is related to two annular solar eclipses of Solar Saros 140.
References
|