Послідовність Люка має таке саме рекурсивне співвідношення як і послідовність Фібоначчі, де кожен доданок є сумою двох попередніх доданків, але з різними початковими значеннями.[1] Це приводить до послідовності, де відношення послідовних доданків наближаються до золотого перерізу, і фактично самі члени є наближеннями цілих степенів золотого перерізу.[2] Послідовність також має різноманітні взаємозв’язки з числами Фібоначчі. Наприклад, додавання будь-яких двох чисел Фібоначчі, розділених двома членами в послідовності Фібоначчі, приводить числа Люка між ними.[3]
Кілька перших чисел Люка
Означення
Аналогічно до чисел Фібоначчі, кожне число Люка визначається як сума двох безпосередніх попередніх членів, утворюючи тим самим цілочисельну послідовність Фібоначчі. Перші два числа Люка — це та на відміну від перших двох чисел Фібоначчі та . Незважаючи на тісний зв’язок в означенні, числа Люка та Фібоначчі мають різні властивості.
Числа Люка можуть бути визначені наступним чином:
(де — або натуральне число).
Послідовність перших дванадцяти чисел Люка наступна:
Усі цілочисельні послідовності типу Фібоначчі з’яляються у зсувній формі як рядки таблиці Вітхоффа[en]; сама послідовність Фібоначчі є першим рядком, а послідовність Люка — другим рядком. Також, як і всі цілочисельні послідовності типу Фібоначчі, відношення між двома послідовними числами Люка збігається до золотого перерізу.
Узагальнення на від’ємні цілі числа
Використовуючи , можна розширити числа Люка на від’ємні цілі числа, щоб отримати подвійно нескінченну послідовність:
де це золотий перетин. Інакше, для величина виразу менше ніж є найближчим цілим числом до або, що еквівалентно, ціла частина , також записується як . Поєднуючи вищесказане з формулою Біне
одержуємо формулу для :
Подільність чисел Люка
Перший підхід до питання про подільність на ціле число полягає у вивченні послідовності залишків від за модулем : ця послідовність перевіряє (в ) одну і ту ж рекурентність і, отже, є періодичною з періодом не більше (довжини періодів функції утворюють послідовність періодів Пізано, послідовність A001175 з Онлайн енциклопедії послідовностей цілих чисел, OEIS). Точніше, дослідження цієї рекурентності та співвідношення , у полі (де - просте число) призводить до результатів, подібних до тих, що були отримані для послідовності Фібоначчі[4][5].
Ми також показуємо, що жодне число Люка не ділиться на число Фібоначчі [4].
Відношення конгруентності
Якщо є числом Фібоначчі, тоді жодне число Люка не ділиться на .
Числа Люка є другою за поширеністю схемою у соняшників після чисел Фібоначчі, коли враховуються спіралі за годинниковою стрілкою та проти годинникової стрілки, згідно з аналізом 657 соняшників у 2016 році.[7]