Просте число — це натуральне число, яке має рівно два різні натуральні дільники (лише 1 і саме число). Решту чисел, окрім одиниці та нуля, називають складеними. Таким чином, всі натуральні числа, більші від одиниці, розбивають на прості і складені. Теорія чисел вивчає властивості простих чисел. В теорії кілець простим числам відповідають незвідні елементи.
Основна теорема арифметики стверджує, що кожне натуральне число більше одиниці (1), можна представити як добуток простих чисел, причому, в єдиний спосіб з точністю до порядку множників. Таким чином, прості числа — це елементарні «будівельні блоки» натуральних чисел.
Представлення натурального числа у вигляді добутку простих називають розкладом на прості або факторизацією числа. Тепер невідомі Поліноміальні алгоритми факторизації чисел, хоча і не доведено, що таких алгоритмів не існує (тут і далі мова йде про поліноміальною залежності часу роботи алгоритму від логарифма розміру числа, тобто від кількості його цифр). На припущенні про високу обчислювальну складність задачі факторизації базується криптосистема RSA.
Однак на практиці замість отримання списку простих чисел найчастіше потрібно перевірити, чи є дане число простим. Алгоритми, які вирішують це завдання, називають тестами простоти. Існує безліч поліноміальних тестів простоти, але більшість з них є стохастичними (наприклад, тест Міллера — Рабина) і використовуються для потреб криптографії. Тільки в 2002 році було доведено[1], що завдання перевірки на простоту в загальному вигляді можна розв'язати за поліноміальний час, але запропонований детермінований алгоритм має досить велику складність, що ускладнює його застосування на практиці.
Простих чисел нескінченно багато. Найдавніше відоме доведення цього факту дав Евклід у «Началах» (книга IX, твердження 20). Його доведення може бути коротко відтворено так:
Уявімо, що кількість простих чисел скінченна. Перемножимо їх і додамо одиницю. Отримане число не ділиться на жодне зі скінченного набору простих чисел, тому що залишок від ділення на будь-яке з них дає одиницю. Отже, добуток має ділитись на деяке просте число, не включене до цього набору.
Здавна ведуться записи, в яких відзначають найбільші відомі на той час прості числа[2]. Один з рекордів поставив свого часу Ейлер, знайшовши просте число .
Найбільшим відомим простим числом станом на жовтень 2024 року є , яке містить 41 024 320 десяткових цифр у своєму записі. Воно було знайдене 12 жовтня 2024 року в рамках проєкту з розподіленого пошуку простих чисел Мерсенна GIMPS[3].
За знаходження простих чисел з понад 100 000 000 та 1 000 000 000 десяткових цифр EFF призначила[4] грошові призи в 150 000 та 250 000 доларів США відповідно.
Деякі властивості
Якщо — просте, і ділить , то ділить щонайменше одне з них. Цю властивість довів Евклід, і відома вона як лема Евкліда. Її використовують при доведенні основної теореми арифметики.
Якщо — скінченна група, і — максимальний степінь, який ділить , то має підгрупу порядку , яку називають підгрупою Силова, більше того, кількість підгруп Силова дорівнює для деякого цілого (теореми Силова).
Натуральне є простим тоді і тільки тоді, коли ділиться на (теорема Вілсона).
при невід'ємних цілих значеннях змінних збігається з множиною простих чисел.[6][7][8] Цей результат є окремим випадком доведеної Юрієм Матіясевічем діофантності будь-якої ефективно зліченної множини.
Проблема Гольдбаха (перша проблема Ландау): довести або спростувати, що кожне парне число, більше двох, може бути представлено у вигляді суми двох простих чисел, а кожне непарне число, більше 5, може бути представлено у вигляді суми трьох простих чисел.
Друга проблема Ландау: чи нескінченна множина «простих близнюків» — простих чисел, різниця між якими дорівнює 2?
Гіпотеза Лежандра(третя проблема Ландау): чи правильно, що між і завжди знайдеться просте число?
Четверта проблема Ландау: чи нескінченна множина простих чисел виду ?
Відкритою проблемою є також існування нескінченної кількості простих чисел у багатьох цілочисельних послідовностях, включаючи числа Фібоначчі, числа Ферма і т. д.
Цей розділ не містить посилань на джерела. Ви можете допомогти поліпшити цей розділ, додавши посилання на надійні (авторитетні) джерела. Матеріал без джерел може бути піддано сумніву та вилучено.(Квітень 2020)
Більшість філософів стародавньої Греції навіть не розглядали 1 як число,[12][13] тому вони навіть не розглядали чи є воно простим. Декілька математиків тих часів вважали, що прості числа є підмножиною непарних чисел, тому вони також не розглядали випадок що число 2 може бути простим. Однак, Евклід і більшість інших Грецьких математиків розглядали 2 як просте число. Ісламські математики середньовіччя здебільшого наслідували Греків і також не розглядали число 1 як число.[12]
У середні віки і в часи Ренесансу математики почали ставитися до 1 як до числа, і деякі з них відносили його до першого простого числа.[14] У середині 18-го століття Християн Гольдбах перелічив число 1 як просте у своєму листуванні з Леонардом Ейлером; однак сам Ейлер не розглядав 1 як просте.[15] В 19-му столітті багато математиків досі продовжували вважати число 1 простим,[16] а переліки простих чисел, в яких включали 1 продовжували публікувати до 1956 р.[17][18]
Якби визначення простих чисел було змінене, так щоб до них віднести одиницю, багато тверджень, які стосуються простих чисел необхідно було б переформулювати у досить не зручний спосіб. Наприклад, основну теорему арифметики необхідно було б перефразувати так щоб розкладання виконувалося у прості множники що більші за 1, оскільки кожне число мало б множину способів розкладання із різною кількістю повторених 1.[16] Аналогічно, не правильно б працювало Решето Ератосфена якби число 1 вважалося простим, оскільки в ньому усі числа є кратними 1 і результатом було б лише одне число 1.[18] Деякі інші властивості простих чисел також не виконуються для випадку з 1: наприклад, формули для Функції Ейлера або для суми функції дільників відрізняються для простих чисел і для 1.[19] До початку XX століття математики дійшли згоди, що число 1 не повинне належати до простих чисел, а скоріше належить до своєї власної окремої категорії «одиниці».[16]
7919 Прайм — астероїд, назва якого означає просте число (англ.prime number — просте число), названий на честь числа 7919, яке є тисячним простим числом.
↑Bruins, Evert Marie, review in Mathematical Reviews of Gillings, R. J. (1974). The recto of the Rhind Mathematical Papyrus. How did the ancient Egyptian scribe prepare it?. Archive for History of Exact Sciences. 12: 291—298. doi:10.1007/BF01307175. ISSN0003-9519. MR0497458.