Мала теорема Ферма — одне з основних тверджень елементарної теорії чисел. Вперше була сформульована в листі французького математика П'єра де Ферма до свого друга Френікля де Бессі[en]18 жовтня1640 року. В листі проте не було наведено доведення. Перше відоме доведення подане Лейбніцом у неопублікованих рукописах.
Формулювання
Мала теорема Ферма допускає кілька еквівалентних формулювань.
Тоді для простого і маємо, що ділиться на .
Справді можна записати де . Оскільки і є взаємно-простими, то, очевидно, що ділить і, як наслідок ділиться на .
Твердження Малої теореми Ферма доводитимемо методом математичної індукції. Теорема очевидно справедлива для .
Припустимо, що вона справджується для певного цілого . Згідно з формулою бінома Ньютона, використовуючи раніше доведене і припущення індукції одержуємо:
.
тобто
, що доводить твердження для додатних цілих. Для від'ємних доведення аналогічне.
Доведення 2 (використовуючи лишки)
Припустимо, що додатне число, що не ділиться на .
Якщо записати
і обрахувати одержану послідовність за модулем , то ми отримаємо деяку перестановку чисел:
.
Справді, жодне з чисел не ділиться на , оскільки і і будь-яке з чисел є взаємно прості з . Далі всі числа мають бути відмінними одне від одного за модулем . Справді, якщо
де і належать множині чисел то, зважаючи на взаємну простоту і отримуємо:
, що неможливо.
Відповідно, якщо ми перемножимо обидві послідовності, то результати повинні бути еквівалентні за модулем :
Після перестановки множників і перепозначення отримуємо:
Остаточно, зважаючи, що і взаємно-прості одержуємо твердження теореми:
Припустимо, що ми маємо намистинки різних кольорів і нам потрібно зробити з них намисто довжиною намистинок. Для початку зробимо стрічку з намистинок. Існує різних стрічок. Відкинемо всі однотонні стрічки їх всього . Залишається різних стрічок. З'єднаємо початок кожної стрічки з її кінцем. Тепер деякі намиста стали однаковими, якщо їх повернути. Оскільки існує різних циклічних перестановок то існує різних намист. Виходячи з інтерпретації числа воно ціле.