У теорії чиселпростим числом Волстенголма називають будь-яке просте число, що задовольняє посиленому порівнянню з теореми Волстенголма. При цьому початковому порівнянню з теореми Волстенголма задовольняють усі прості числа, крім 2 та 3. Прості числа Волстенголма названо на честь математика Джозефа Волстенголма[en], який першим довів теорему в XIX столітті.
Пошук простих чисел Волстенголма розпочався в 1960-х роках і триває досі. Останній результат опубліковано 2007 року. Перше просте число Волстенголма 16843 знайдено 1964 року, хоча результат і не було опубліковано в явному вигляді[9]. Знахідку 1964 року потім незалежно підтверджено в 1970-х роках. Це число залишалося єдиним відомим прикладом таких чисел майже 20 років, поки 1993 року не було оголошено про виявлення другого простого числа Волстенголма 2124679[10]. На той час аж до 1,2 × 107 не було знайдено жодного числа Волстенголма, крім згаданих двох[11]. 1995 року Макінтош (McIntosh) підняв межу до 2 × 108[4], а Тревісан (Trevisan) та Вебер (Weber) змогли досягти 2,5 × 108[12]. Останній результат зафіксовано 2007 року — до 1 × 109 так і не знайдено простих чисел Волстенголма[13].
Очікувана кількість
Існує гіпотеза, що простих чисел Волстенголма нескінченно багато. Припускають також, що кількість простих чисел Волстенголма, які не перевищують , має бути порядку , де позначає натуральний логарифм. Для будь-якого простого числа часткою Волстенголма називають
Selfridge, J. L.; Pollack, B. W. (1964), Fermat's last theorem is true for any exponent up to 25,000, Notices of the American Mathematical Society, 11: 97
Krattenthaler, C.; Rivoal, T. (2009), On the integrality of the Taylor coefficients of mirror maps, II, Communications in Number Theory and Physics, 3, arXiv:0907.2578