Центральні багатокутні числа

Центральні багатокутні числа показують, на яку максимальну кількість частин можна розрізати коло прямими лініями. Відносяться до фігурних чисел.

  • a(0) = 1
  • a(1) = 2
  • a(2) = 4
  • a(3) = 7
  • a(n) = n × (n + 1)/2 + 1

Аналогом центральних багатокутних чисел для тримірного куба є число торта.

Формула і послідовність

Максимальне число p шматків, які можуть бути зроблені з допомогою n розрізів, де n ≥ 0, визначається за формулою

Використовуючи біноміальні коефіцієнти, формула може бути вираженою наступним чином

послідовність A000124 з Онлайн енциклопедії послідовностей цілих чисел, OEIS, що починається з , дає

1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, …

Кожне число дорівнює 1 плюс трикутне число.

Література

  • Деза Е. И. — Специальные числа натурального ряда ISBN 978-5-397-01750-3