Многочлен ДжонсаМногочлен Джонса — полиномиальный инвариант узла, сопоставляющий каждому узлу или зацеплению многочлен Лорана от формальной переменной с целыми коэффициентами. Построен Воном Джонсом в 1984 году. Определение через скобку КауффманаДля заданного ориентированного зацепления определяется вспомогательный многочлен:
где — число закрученности диаграммы , а — скобка Кауффмана. Число закрученности определяется как разница между числом положительных перекрёстков и числом отрицательных перекрёстков и не является инвариантом узла: оно не сохраняется при преобразованиях Рейдемейстера I типа. — инвариант узла, поскольку он инвариантен относительно всех трёх преобразований Рейдемейстера диаграммы . Инвариантность относительно преобразований II и III типов следует из инвариантности скобки Кауффмана и числа закрученности относительно этих преобразований. Напротив, для преобразования I типа скобка Кауффмана умножается на , что в точности компенсируется изменением на +1 или −1 числа закрученности . Многочлен Джонса определяется из подстановкой:
результирующее выражение является многочленом Лорана от переменной . Определение через представления группы косОригинальное определение Джонса использует операторную алгебру и понятие следа представления кос, возникшего в статистической механике (модель Поттса[англ.]). Теорема Александера[англ.] утверждает, что любое зацепление является замыканием косы с нитями, в связи с этим можно определить представление группы кос с нитями на алгебре Темперли — Либа с коэффициентами из и . Стандартная образующая косы равна , где — стандартные образующие алгебры Темперли — Либа. Для слова косы вычисляется , где — след Маркова, в результате получается , где — скобочный полином. Преимущество этого подхода состоит в том, что выбрав аналогичные представления в других алгебрах, таких как представление -матриц, можно прийти к обобщениям инвариантов Джонса (например, таковым является[1] понятие -параллельного полинома Джонса). Определение через скейн-соотношенияМногочлен Джонса однозначно задаётся тем, что он равен 1 на любой диаграмме тривиального узла, и следующим скейн-соотношением:
где , , и — три ориентированных диаграммы зацепления, совпадающих везде, кроме малой области, где их поведение соответственно является положительным и отрицательным пересечениями и гладким проходом без общих точек: СвойстваМногочлен Джонса обладает многими замечательными свойствами[2][3]. Для зацеплений с нечётным числом компонент (в частности, для узлов) все степени переменной в многочлене Джонса целые, а для зацеплений с чётным числом компонент — полуцелые. Многочлен Джонса связной суммы узлов равен произведению полиномов Джонса слагаемых, то есть:
Многочлен Джонса несвязной суммы узлов равен:
Многочлен Джонса объединения зацепления и тривиального узла равен:
Для — ориентированного зацепления, получаемого из заданного ориентированного зацепления заменой ориентации некоторой компоненты на противоположную, имеет место:
где — это коэффициент зацепления компоненты и . Многочлен Джонса не меняется при обращении узла, то есть при замене направления обхода на противоположное (смене ориентации). Зеркально-симметричный образ зацепления имеет многочлен Джонса, получающийся заменой на (свойство легко проверяется с использованием определения через скобку Кауффмана). Если — узел, тогда:
Значение многочлена Джонса для зацепления с числом компонент зацепления в точке 1:
Многочлен Джонса -торического узла:
Открытые проблемыВ 2003 году построено семейство нетривиальных зацеплений с многочленом Джонса равным многочлену Джонса тривиального зацепления[4], при этом неизвестно, существует ли нетривиальный узел, многочлен Джонса которого является таким же, как и у тривиального узла. В 2017 году построено семейство нетривиальных узлов с пересечениями, для которых многочлен Джонса сравним с единицей по модулю [5]. Вариации и обобщения
Примечания
Литература
|