Обратимый узелВ теории узлов обратимый узел — это узел, который может быть непрерывной деформацией переведён в себя, но с обратной ориентацией. Необратимый узел — это любой узел, который не имеет такого свойства. Обратимость узла является инвариантом узла. Обратимое зацепление — это зацепление с таким же свойством. Существует только пять типов симметрии узлов, определяемые хиральностью и обратимостью — полностью хиральный, двухсторонний, положительно ахиральный необратимый, отрицательно ахиральный необратимый и полностью ахиральный обратимый[1]. История вопроса
Давно известно, что большинство простых узлов, таких как трилистник и восьмёрка, обратимы. В 1962 году Ральф Фокс высказал предположение, что некоторые узлы необратимы, но не было доказано их существование, пока в 1963 году Хейл Троттер не обнаружил бесконечное семейство необратимых кружевных зацеплений[2]. Теперь известно, что почти все узлы необратимы[3]. Обратимые узлыВсе узлы с числом пересечений 7 и менее обратимы. Не известно общего метода, который дал бы ответ обратим узел или нет[4]. Проблему можно перевести в алгебраическую терминологию [5], но, к сожалению, не известно алгоритма решения этой алгебраической задачи. Если узел обратим и ахирален, он полностью ахирален. Простейший узел с этим свойством — это восьмёрка. Хиральные обратимые узлы классифицируются как двухсторонние[6]. Строго обратимые узлыБолее абстрактный способ определения обратимого узла — сказать, что существует гомеоморфизм 3-сферы, переводящий узел в себя, но меняющий ориентацию узла на противоположную. Если использовать вместо гомеоморфизма более строгое условие — инволюцию — получим определение строго обратимого узла. Все узлы с туннельным числом[англ.] единица, такие как трилистник и восьмёрка, строго обратимы[7]. Необратимые узлыПростейшим примером необратимого узла служит 817 (в обозначениях Александера — Бриггса) или .2.2 (в обозначениях Конвея). Кружевной узел 7, 5, 3 необратим, как и все кружевные узлы вида (2p + 1), (2q + 1), (2r + 1), где p, q и r — различные целые, что даёт бесконечное семейство узлов, необратимость которых доказана Троттером[8]. См. такжеПримечания
Литература
Внешние ссылки
|