Гипоциклоида

Гипоцикло́ида (греч. ὑπό (под, внизу) + греч. κύκλος (круг, окружность)) — плоская кривая, образуемая точкой окружности, катящейся по внутренней стороне другой окружности без скольжения[1].

История

Схема гипоциклоиды с k=2 (пара Туси), сделанная ат-Туси в XIII-м веке[2]

Впервые частный случай гипоциклодиды, который сейчас известен как пара Туси, был описан астрономом и математиком Насир ад-Дином ат-Туси в его труде Тахрир аль-Маджисти в 1247 году[3][4]. Позднее немецкий художник и теоретик эпохи Ренессанса Альбрехт Дюрер описал эпитрохоиды в 1525 году, а Рёмер и Бернулли сосредоточились на изучении некоторых специфических гипоциклоид, таких как астроиды, в 1674 и 1691 годах соответственно.

Уравнения

Внутри воздушного шарика катится маленькая батарейка с прикреплённым светодиодом, видна гипоциклоида с k=9

Параметрические уравнения:

где , где  — радиус неподвижной окружности,  — радиус катящейся окружности.

Модуль величины определяет форму гипоциклоиды. При гипоциклоида описывается парой Туси — это диаметр неподвижной окружности, при является астроидой. Если модуль  — несократимая дробь вида (), то  — это количество каспов данной гипоциклоиды, а  — количество полных вращений катящейся окружности. Если модуль иррациональное число, то кривая является незамкнутой и имеет бесконечное множество несовпадающих каспов.

Примеры гипоциклоид

См. также

Примечания

  1. Гипоциклоиды и эпициклоиды // Большая советская энциклопедия : в 66 т. (65 т. и 1 доп.) / гл. ред. О. Ю. Шмидт. — М. : Советская энциклопедия, 1926—1947.
  2. Vatican Library, Vat. ar. 319 fol. 28 verso math19 NS.15 Архивировано 24 декабря 2014 года., fourteenth-century copy of a manuscript from Tusi
  3. Weisstein, Eric W. Tusi Couple (англ.). mathworld.wolfram.com. Дата обращения: 27 февраля 2023.
  4. Blake, Stephen P. Astronomy and Astrology in the Islamic World : [англ.]. — Edinburgh University Press, 2016-04-08. — ISBN 978-0-7486-4911-2.

Литература

  • Гипоциклоида // Казахстан. Национальная энциклопедия. — Алматы: Қазақ энциклопедиясы, 2005. — Т. II. — ISBN 9965-9746-3-2. (CC BY-SA 3.0)