Конхо́ида криво́й (англ.conchoid; conchoidal curve, от др.-греч.κονχοειδής — похожий на раковину) — плоская кривая, геометрическое место преобразованных концов — конхоид — радиус-векторов каждой точки исходной плоской кривой, причём эти радиус-векторы увеличены (одна ветвь конхоиды) или уменьшены (другая ветвь конхоиды) на постоянную величину . Если уравнение исходной кривой в полярной системе координат, то уравнение её конхоиды [1][2][3][4].
Начало радиус-вектора называется полюсом конхоиды (в данном случае это начало координат ), а постоянная величина приращения радим-вектора — модулем конхоиды[4].
Для получения новых плоских кривых — конхоид из старых — директрис[5], или базисов[6], используется конхоидное преобразование, при этом уравнение конхоиды могут записать в виде
Говорят о двух ветвях конхоиды, соответствующих[7][8]:
либо прибавлению и вычитанию — положительной константы:
либо прибавлению этой константы в противоположных направлениях.
Для вычерчивания конхоиды Никомеда служит прибор конхоидограф, или конхоидальный циркуль[9].
Конхоидальные циркули бывают разных конструкций. Опишем устройство конхоидографа, показанного на рисунке справа. Основанием конхоидального циркуля служит прямоугольный планшет. Горизонтально посередине планшета укреплена вытянутая рамка, которая служит директрисой коноиды Никомеда — прямой. В середине этой рамки находится муфта, свободно движущаяся вдоль рамки и снабжённая стерженьком. Под серединой рамки на другом стерженьке закреплена другая муфта, в которую вставлена рейка. Поэтому рейка может вращаться вокруг стерженька своей муфты и двигаться вдоль этой муфты. На другом конце рейки закреплено чертящее остриё, а на расстоянии от этого конца — шайбочка, при помощи которой рейка надевается на стерженёк муфты рамки. При вращении рейки и движении её вдоль второй муфты чертящее остриё нарисует верхнюю вервь конхоиды Никомеда[9].