Конхоида НикомедаКонхоида Никомеда ― конхоида прямой, то есть кривая, получающаяся увеличением (вторая ветвь — уменьшением) радиус-вектора точек прямой на некую постоянную величину ; плоская алгебраическая кривая 4-го порядка. Конхоида имеет две ветви, сама прямая конхоиды является асимптотой обеих ветвей. Название происходит от др.-греч. κογχοειδής — «похожий на раковину»[1]. ПостроениеПусть на плоскости выбрана прямая m и точка O, отстоящая от прямой на расстояние a. Проведём через точку O луч, пересекающий прямую m в некоторой точке N; точки M1 и M2, лежащие на луче ON и отстоящие от точки N на заранее выбранное расстояние l, будут точками конхоиды. Меняя направление луча ON, можно построить всю конхоиду[1].
УравненияДекартовы координатыЕсли центр конхоиды помещён в начале координат, а прямая задана уравнением в декартовых прямоугольных координатах, то уравнение конхоиды имеет вид Начало координат является двойной точкой, характер которой зависит от величин и :
Полярные координатыВ полярных координатах, если начало координат находится на расстоянии от прямой, которая смещается вдоль радиус-вектора на расстояние , уравнение конхоиды имеет вид[1] ИсторияКривая названа по имени Никомеда (III—II века до н. э.), который применял её для решения задачи о трисекции угла и удвоения куба[1]. ПримечанияЛитература
|