Зрізаний октаедр![]() ![]() Зрі́заний окта́едр — напівправильний многогранник, належить до архімедових тіл, що складається із 8 правильних шестикутників і 6 квадратів. В кожній із 24 вершин сходяться дві шестикутні грані і один квадрат. Кількість двотипних ребер налічує 36 штук, 24 з яких розділяють шестикутник і квадрат і 12 розділяють два шестикутники. Так само як і куб, зрізаний октаедр може заповнити собою безостаточно тривимірний простір. Двоїстий до зрізаного октаедра многогранник — тетракісгексаедр. Отримати даний многогранник можна внаслідок зрізання всіх шести вершин правильного октаедра на третину від первісної довжини ребра. Ортогональні проєкції
ФормулиЗнаючи довжину ребра зрізаного октаедра — a - отримуємо:
![]() Графічне зображенняЯкщо шестикутну грань зрізаного тетраедра розділити на трикутники із заданою довжиною ребра отримаємо - Перестановочний многогранник![]() Зрізаний октаедр також можна представити у симетричних координатах чотирьох вимірів. Будь-яка перестановка (1,2,3,4) утворює вершини зрізаного октаедра у тривимірному просторі, x + y + z + w = 10. Таким чином, зрізаний октаедр є перестановочним многогранником четвертого порядку, тривимірним опуклим многогранником вкладеним у 4-и вимірний евклідовий простір, який є опуклою оболонкою всіх точок, що отримуються перестановками координат вектора (1,2,3,4).
![]() Сферична плиткаЗрізаний октаедр можна подати у вигляді сферичної плитки, і спроєктувати на площину у вигляді стереографічної проєкції. Ця проєкція буде конформною, зберігаючи кути, але не площини чи ребра багатогранника. Прямі лінії на сфері проєктуватимуться як дуги на площині.
Джерела
|
Portal di Ensiklopedia Dunia