У дельтаедра з 6 гранями деякі вершини мають ступінь 3, а деякі — ступінь 4. У дельтаедрів з 10, 12, 14 і 16 гранями деякі вершини мають ступінь 4, а деякі — ступінь 5. Ці п'ять неправильних дельтаедрів належать до класу правильногранних багатогранників — опуклих багатогранників з гранями у вигляді правильних багатокутників.
Не існує опуклого дельтаедра з 18 гранями[3]. Однак ікосаедр зі стягнутим ребром[en] є прикладом октаедра, який можна зробити опуклим з 18 неправильними гранями, або з двома наборами по три рівносторонніх трикутники, що лежать в одній площині.
Існує нескінченно багато дельтаедрів з копланарними (належними одній площині) трикутниками. Якщо множини копланарних трикутників вважати однією гранню, можна нарахувати менше граней, ребер і вершин. Копланарні трикутні грані можуть бути злиті в ромбічні, трапецієподібні, шестикутні або інші рівносторонні багатокутні грані. Кожна грань має бути опуклим поліамондом, таким як , , , , , , і , …[4]
Freudenthal H., van der Waerden B. L. Over een bewering van Euclides ("On an Assertion of Euclid") // Simon Stevin[en]. — 1947. — Т. 25 (27 грудня). — С. 115–128. (Автори показали, що існує тільки 8 опуклих дельтаедрів.)
Charles W. Trigg. An Infinite Class of Deltahedra // Mathematics Magazine. — 1978. — Т. 51, вип. 1 (27 грудня). — С. 55–57.