Теоремы Шеннона для источника общего видаТеоремы Шеннона для источника общего вида описывают возможности кодирования источника общего вида с помощью разделимых кодов. Другими словами, описываются максимально достижимые возможности кодирования без потерь. Прямая теоремаВ применении к побуквенному кодированию прямая теорема может быть сформулирована следующим образом: Существует префиксный, то есть разделимый код, для которого средняя длина сообщений отличается от нормированной энтропии не более, чем на единицу: где:
В качестве доказательства теоремы исследуются характеристики кода Шеннона-Фано. Данный код удовлетворяет условиям теоремы, и он обладает указанными свойствами. Обратная теоремаОбратная теорема ограничивает максимальную степень сжатия, достигаемую с помощью кодирования без потерь. В применении к побуквенному кодированию, описывает ограничение на среднюю длину кодового слова для любого разделимого кода. Для любого разделимого кода с длинами средняя длина сообщений больше или равна энтропии источника , нормированный на двоичный логарифм от числа букв в алфавите кодера: Литература
|
Portal di Ensiklopedia Dunia