Affinché ciò si verifichi è necessario (ma non sufficiente) che tutte le derivate parziali calcolate nel punto esistano, cioè se è differenziabile, allora è derivabile nel punto poiché esistono e sono finiti i limiti dei rapporti incrementali direzionali. Il concetto di differenziabilità permette di generalizzare il concetto di funzione derivabile a funzioni vettoriali di variabile vettoriale, e la differenziabilità di una funzione permette di individuare per ogni punto del suo grafico un iperpiano tangente.
Una funzione può essere differenziabile volte, e si parla in questo caso di funzione di classe. Una funzione differenziabile infinite volte è inoltre detta liscia. Nell'analisi funzionale le distinzioni fra le varie classi sono molto importanti, mentre in altri settori della matematica queste differenze sono meno tenute in considerazione, e spesso si usa impropriamente il termine "funzione differenziabile" per definire una funzione liscia.
La funzione è infine differenziabile se lo è in ogni punto del dominio.[2] In particolare, il teorema del differenziale totale afferma che una funzione è differenziabile in un punto se tutte le derivate parziali esistono in un intorno del punto per ogni componente della funzione e se sono inoltre funzioni continue. Se inoltre l'applicazione che associa a è continua, la funzione si dice differenziabile con continuità.[3]
Nel caso di una funzione di una variabile definita su un intervallo aperto dell'asse reale, essa è detta differenziabile in se esiste un'applicazione lineare tale che:[4]
Se una funzione è differenziabile in un punto allora tutte le derivate parziali calcolate nel punto esistono, ma non vale il viceversa. Tuttavia, se tutte le derivate parziali esistono e sono continue in un intorno del punto allora la funzione è differenziabile nel punto, ovvero è di classe.
Il limite va inteso in relazione alla topologia del piano. In altre parole, per ogni successione di numeri complessi che convergono a il rapporto incrementale deve tendere allo stesso numero, indicato con . Se è differenziabile in senso complesso in ogni punto di , essa è una funzione olomorfa su . Si dice inoltre che è olomorfa nel punto se è olomorfa in qualche intorno del punto, e che è olomorfa in un insieme non aperto se è olomorfa in un aperto contenente .
La relazione tra la differenziabilità di funzioni reali e funzioni complesse è data dal fatto che se una funzione complessa è olomorfa allora e possiedono derivata parziale prima rispetto a e e soddisfano le equazioni di Cauchy-Riemann:
Una funzione differenziabile in un punto è continua in . Infatti:
per la definizione data di funzione differenziabile e per la continuità delle funzioni lineari.
Se è una funzione differenziabile in , allora essa ammette tutte le derivate parziali in . Viceversa non è sempre vero che l'esistenza delle derivate parziali in un punto garantisca anche la differenziabilità nel punto. Ad esempio, la funzione reale di due variabili reali:
ammette derivate parziali ovunque, ma il fatto che in la funzione non sia continua impedisce la sua differenziabilità in . Tuttavia, se è di classe in un intorno di , cioè se esistono tutte le derivate parziali di e queste sono funzioni continue, allora è differenziabile in . Vale quindi, se è aperto, che implica la differenziabilità in che implica a sua volta che .
Da un punto di vista informale, una funzione differenziabile è una funzione tale da apparire sempre più simile ad una trasformazione affine quando viene vista ad ingrandimenti sempre maggiori. La trasformazione affine che approssima in un intorno di è la funzione:
Per verificarlo, si consideri un intorno di di raggio .
Se si effettua uno zoom sul grafico di in modo che l'intorno ci appaia di raggio , la distanza che si vede tra la funzione e la funzione affine che la approssima in corrispondenza del punto è uguale a:
dove la divisione per corrisponde al riscalamento dovuto allo "zoom" che si sta operando sull'intorno. Quindi la massima distanza che si vede nell'intorno riscalato è:
ora si può dimostrare che dalla definizione di differenziabilità di si deduce che:
il che significa che quello che si osserva ingrandendo progressivamente il grafico di e della sua approssimazione affine intorno a è che questi tendono a coincidere. Viceversa, la relazione implica direttamente la differenziabilità di .