Простий вузол (теорія вузлів)В теорії вузлів простий вузол або просте зачеплення — вузол, який, у певному сенсі, нерозкладний. Точніше, це нетривіальний вузол, який не можна подати у вигляді конкатенації двох нетривіальних вузлів. Про вузли, які не є простими, кажуть як про складені вузли або складені зачеплення. Визначити, чи є даний вузол простим чи ні, може виявитися складною задачею. ПрикладиХорошим прикладом сімейства простих вузлів служать торичні вузли. Ці вузли утворюються шляхом накручування кола на тор p разів в одному напрямку і q разів в іншому, де p і q є взаємно простими цілими числами. Найпростіший простий вузол — це трилисник з трьома перетинами. Трилисник є, фактично, (2, 3)-торичним вузлом. Вузол «вісімка» з чотирма перетинами є найпростішим неторичним вузлом. Для будь-якого додатного цілого числа n є скінченне число простих вузлів з n перетинами. Перші кілька значень числа простих вузлів (послідовність A002863 з Онлайн енциклопедії послідовностей цілих чисел, OEIS) подані в таблиці.
Зауважимо, що антиподи враховувалися в цій таблиці і на малюнку нижче тільки один раз (тобто вузол і його дзеркальне відображення вважаються еквівалентними). Теорема ШубертаТеорема, що належить Хорсту Шуберту, стверджує, що будь-який вузол можна єдиним чином подати у вигляді конкатенації простих вузлів[1]. Див. такожПримітки
Література
Посилання
|