Funzione implicitaIn matematica, una funzione implicita è una funzione definita attraverso un'equazione implicita, ovvero da una relazione della forma , dove è una funzione di diverse variabili (spesso si tratta di un polinomio). Ad esempio, l'equazione implicita della circonferenza unitaria è . Le funzioni implicite associano una variabile dell'equazione alle altre variabili, e in questo modo l'equazione definisce "implicitamente" la funzione implicita. Per esempio la funzione implicita per la circonferenza unitaria è caratterizzata con: che definisce come una funzione di se e solo se e si considerano soltanto valori della funzione positivi (o soltanto negativi). Un altro classico esempio di funzione implicita è la funzione inversa, data dall'equazione , che ha per soluzione: Il teorema delle funzioni implicite fornisce le condizioni per cui un'equazione definisce una funzione implicita. EsempiPrendiamo come altro esempio la sfera definita in . La sua equazione in forma parametrica sarà:
Possiamo notare che la parametrizzazione, pur essendo di una sfera nello spazio di 3 variabili, sia dipendente soltanto da 2 parametri ( e ). Analogamente, la sua forma implicita sarà definita dalla seguente equazione:
quindi, tramite un'equazione in 3 variabili. Bibliografia
Voci correlateCollegamenti esterni
|
Portal di Ensiklopedia Dunia