Дека́ртів листок — плоска крива третього порядку, що в прямокутній системі описується рівнянням:
.
Параметр визначається як діагональквадрата, сторона якого дорівнює найбільшій хорді петлі.
Історична довідка
Вперше в історії математики крива, що пізніше отримала назву «декартів листок», визначена у листі Декарта до Ферма у 1638 році як крива, для якої сума об'ємів кубів, побудованих на абсцисі і ординаті кожної точки, дорівнює об'єму паралелепіпеда, побудованого на абсцисі, ординаті і деякій сталій. Форма кривої встановлюється вперше Жилем Робервалем, котрий знайшов вузлову точку кривої, однак у його подачі крива складається лише з петлі. Побудувавши цю криву у чотирьох квадрантах, він отримав фігуру, що нагадує квітку з чотирма пелюстками. Однак, назва кривої «пелюстка жасмину» (фр.fleur de jasmin) не закріпилась. Повну форму кривої з наявністю асимптоти було визначено пізніше (1692) Гюйгенсом і Йоганном Бернуллі. Назва «декартів листок» стала вживатись лише з початку 18 століття на пропозицію д'Аламбера.
Площа області між асимптотою і кривою дорівнює площі петлі .
Об'єм тіла, утвореного при обертанні дуги навколо осі абсцис .
Використання
Відому популярність для вибору траєкторій руху обробного інструменту при високошвидкісному фрезеруванні (HSM) набули траєкторії типу «петля». Застосування такої стратегії при обході особливих точок в контурному фрезеруванні вимагає її трансформації у криві, які можуть виконувати спряження. І тут часто використовується траєкторія у формі декартового листка[1].