逆元素
數學中,逆元素(英語:inverse element)又称逆元,可推廣加法中的反数和乘法中的倒數。 定義設S為一有二元運算 * 的集合。若e為(S,*)的單位元且a*b=e,則a稱為b的左逆元素且b稱為a的右逆元素。若一元素x同時是y的左逆元素和右逆元素時,x稱為y的兩面逆元素或簡稱為逆元素。S內的一有兩面逆元素的元素被稱為在S內為可逆的。 正如(S,*)可以有數個左單位元或右單位元一般,一元素同時有數個左逆元素或右逆元素也是有可能的。甚至有可能有數個左逆元素和右逆元素。 若其運算 * 具有結合律,則當一元素有一左逆元素和一右逆元素時,這兩個會是相同且唯一的。在這一情形之下,可逆元素的集合會是個群,稱為S的可逆元群,且標記為U(S)或。 例子每一實數x都會有一加法逆元(即加法上的逆元素)-x。每一非零實數x都會有一倒數(即乘法上的逆元素)。此外,零沒有倒數。 一元素在一體K內的方陣M為可逆的(在所有相同大小方陣的集合內,於矩陣乘法下)若且唯若其行列式不等於零。若M的行列式為零,它便不可能會有一單面逆元素,因此一單面逆元素必為兩面逆元素。更多詳情請參見逆矩陣。 更一般地,一元素在一可交換環R內的方陣是可逆的若且唯若其行列式在R是可逆的。 一函數g是一函數f的左(右)逆元素(在複合函數之下),若且唯若當()為f定義域(陪域)上的恆等函數。在這一例子裡,一函數有右逆元素而無左逆元素,或許相反,是很常見的。 另見 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia