Векторное исчислениеВе́кторное исчисле́ние (англ. Vector calculus) — раздел математики, в котором изучаются свойства операций над векторами[1][2][3][4][5]. Векторное исчисление, как и любое другое исчисление, использует определённые операции над векторами, такие, как сложение, умножение, дифференцирование. Операции определены так, чтобы их легко можно было интерпретировать в математике, механике и физике[6]. Например, в физике постоянно встречается правило параллелограмма: параллелограмм сил, скоростей и так далее. Именно этому правилу и отвечает операция сложения векторов[6]. Поэтому, с одной стороны, использование векторного исчисления при изучении соответствующих явлений упрощает исследование, а с другой стороны, исследование получается более наглядным и естественным без дополнительного введения посторонних элементов, таких как координаты[6]. Подразделения векторного исчисленияВ связи с разнообразием особенностей векторов, зависящих от пространства, в котором они исследуются, векторное исчисление подразделяется на[1][2][3][7][5]: Векторная алгебра изучает[1][2][3][8][5]:
Векторный анализ изучают векторы как функции от одного или нескольких скалярных аргументов[1][2][3][9][5]. Расширением векторного исчисления является тензорное исчисление, изучающее тензоры и тензорные поля. Тензорное исчисление в свою очередь разделяется на[10]:
Тензорное исчисление является составной частью дифференциальной геометрии, используемой, в том числе, в современной теоретической физике[10]. Дальнейшее развитие математики в этом направлении привело к появлению следующих разделов, тесно взаимодействующих с современной физикой[11]: Возникновение и развитиеВекторное исчисление появилось в результате востребованности механикой и физикой[12][2][13][1][5]. До XIX века вектор задавали только с помощью координат, операции над векторами были вычислениями координат. Только в середине XIX века было создано векторное исчисление, которое позволило оперировать непосредственно векторами, без привлечения каких-либо координат[2][1][14]. Основы векторного исчисления заложены в середине XIX века двумя учёными[12][14]:
Эти два математика независимо друг от друга различными способами открыли векторные операции. Но в то время еще не было физических теорий, существенно использующих векторное исчисление[12]. Катализатором интенсивного развития и распространения векторного исчисления явилось создание шотландским физиком Максвеллом теории электромагнитного поля в «Трактате об электричестве и магнетизме» (1873), где решающее значение имели понятия векторного исчисления. Все современные учебные курсы теоретической механики, газо-, гидро- и электродинамики, аналитической и дифференциальной геометрии и так далее основаны на векторном исчислении[12][13]. Современный вид векторного исчисления возник в трудах американского физика, физикохимика, математика и механика Гиббса[2][14]. Русские учёные существенно развили векторное исчисление. Признанный лидер математиков Российской империи в 1830—1860-е годы Остроградский доказал основную теорему векторного исчисления. Русский и советский математик и механик Котельников, развивая своё винтовое исчисление, внес важный вклад в механику и геометрию. Советские математики и механики Зейлигер и Широков продолжили эти исследования. Русский математик и механик Сомов написал книгу «Векторный анализ» (1907), оказавшую сильное влияние на развитие векторного исчисления[14]. Такое широкое использование векторного исчисления можно объяснить его свойствами[11]:
Потребности физики привела к созданию в начале XX века усилиями многих учёных тензорное исчисление, обобщающее теорию векторов. В дальнейшем результате объединения понятий алгебры, анализа и геометрии появились новые отрасли математики: функциональный анализ, теория представление непрерывных групп, исчисление геометрических объектов и так далее. Эти новые направления математики, организующие принципы векторного исчисления, переплелись с понятиями современной физики[11]. Разделы векторного исчисленияВекторная алгебраВ данном разделе векторного исчисления изучаются свойства линейных операций с векторами: сложение, умножение векторов на число, различные произведения векторов — скалярное, псевдоскалярное, векторное, смешанное, двойное векторное и т. д.[15]. В приложении к аналитической геометрии исследуются геометрические свойства векторов и их совокупности. В частности, коллинеарность, компланарность векторов, свойства векторного базиса. В аналитической и теоретической механике на базе законов векторной алгебры исследуются движение и взаимодействие материальных тел[16] Расширением векторной алгебры является тензорная алгебра, в которой исследуются алгебраические операции над тензорами[17]. Раздел векторного исчисления, в котором исследуются статические, стационарные и динамические векторные и скалярные поля. Векторный анализ оперирует с понятиями поток вектора, циркуляция вектора,[18]. Оперируя данными понятиями, исследуются взаимоотношения определяющих поля скаляров и векторов и доказываются базовые теоремы векторного анализа:
Расширением векторного анализа является тензорный анализ, изучающий дифференциальные операторы, действующие на алгебре . Рассматриваются и более общие операторы: тензорные плотности, дифференциальные формы со значениями в векторном расслоении[20]. Методы, основанные на векторном представлении функций, нашли широкое применение в теории линейных интегральных уравнений[21], в теории обработки сигналов[22], в теории обыкновенных дифференциальных уравнений[23], алгебраической геометрии[24] и т. д. Примечания
Источники
|
Portal di Ensiklopedia Dunia