Дванадцятигранник
Дванадцятигранник або додекаедр (дав.-гр. δωδεκάεδρον (dōdekáedron) ; від грец. δώδεκα (dṓdeka) — дванадцять і грец. ἕδρα (hédra) — грань) — довільний многогранник із дванадцятьма гранями. Існує 6 384 634 топологічно різних опуклих додекаедрів, не враховуючи тих, що отримані шляхом дзеркального відбиття, з кількістю вершин від 8 до 20.[1] (Два многогранники вважають "топологічно різними", якщо вони мають різну структуру розташування граней і вершин, так що неможливо перетворити один в інший, просто змінивши довжини ребер або кути між ребрами чи гранями). ![]() Найбільш відомий додекаедр — це правильний додекаедр, всі грані якого є правильними п'ятикутниками. Він є найбільш симетричним з усіх опуклих додекаедрів, має ікосаедричну симетрію[en] Ih, порядок 120. Деякі додекаедри мають таку ж комбінаторну структуру, як і правильний додекаедр (в сенсі графа, утвореного його вершинами і ребрами), але їх п'ятикутні грані не є правильними: — піритоедр, поширена кристалічна форма піриту, має піритоедричну симетрію Th, — тетартоїд має хіральну тетраедричну симетрію T. ![]() Ромбододекаедр можна розглядати як граничний випадок піритоедра, і він має октаедричну симетрію[en] Oh. Ромбододекаедр є паралелоедром[en], зоноедром а також двоїстим до кубооктаедра (напівправильного многогранника Архімеда).
Ромбо-шестикутний додекаедр[en] (або подовжений додекаедр, або гексоромбододекаедр), ромбо-трапецоїдний додекаедр[en] а також ромбододекаедр можуть утворювати стільники, що замощують тривимірний простір без проміжків та накладень. Правильний додекаедрОпуклий правильний додекаедр є одним з п'яти правильних многогранників Платона і може бути представлений своїм символом Шлефлі як {5, 3}, тобто кожна вершина оточена трьома правильними п'ятикутними гранями. Двоїстим многогранником до правильного додекаедра є правильний ікосаедр {3, 5}, кожна вершина якого оточена п'ятьма правильними трикутними гранями. Опуклий правильний додекаедр має три зірчасті форми; всі три є правильними зірчастими многогранниками Кеплера — Пуансо. Їх гранями є правильні п'ятикутники та правильні пентаграми.
Характерною особливістю правильного додекаедра (також і правильного ікосаедра) є наявність в нього осей обертової симетрії 5-го порядку, які не дозволені правилами кристалографії [2] , тобто в природі не існує кристалів мінералів, що мають форму правильного додекаедра. Проте можна зустріти квазікристали у формі правильного додекаедра (наприклад, квазікристал гольмій — магній — цинку (Ho-Mg-Zn)). Також існують мінерали, що мають форму додекаедра з неправильними гранями (наприклад, пірит). Додекаедри з п'ятикутними гранямиВ кристалографії в деяких класах симетрії кубічної кристалічної системи можуть траплятися два основних види додекаедрів, які топологічно еквівалентні правильному додекаедру, але мають менший порядок симетрії (тобто менш симетричні): піритоедр з піритоедричною симетрією і тетартоїд з хіральною тетраедричною симетрією: Піритоедр
Піритоедр [3] [4] [5] (або пентагондодекаедр [6] [7] ,) — це додекаедр з піритоедричною симетрією (Th). Має 12 конгруентних п'ятикутних дзеркально-симетричних граней (тобто симетричних відносно осі, що проходить через вершину і середину протилежної сторони). Має 20 вершин, розділених на два типи; в кожній вершині сходяться три грані. Його 30 ребер також розділені на два типи — 24 і 6 ребер однакової довжини. Єдиними осями обертової симетрії є три взаємно перпендикулярні осі 2-го порядку та чотири осі 3-го порядку. Осі симетрії п'ятого порядку відсутні, що дозволяє цьому многограннику бути формою для кристалів. Зокрема, форму піритоедру має кристал мінералу піриту. Кристал піритуКристал піриту найчастіше зустрічається у двох поширених кристалічних формах — піритоедр та куб. У піриту, що має форму піритоедру, грані мають індекс Міллера {2,1,0}, що означає, що двогранний кут становить 2·arctan(2) ≈ 126.87°, а кути кожної п'ятикутної грані становлять: кут ≈ 121,6° розташований між двома кутами ≈ 106,6° і навпроти двох кутів ≈ 102,6°. Наступні формули описують розміри граней ідеального кристала (який рідко зустрічається в природі).
де — довжина короткого ребра многогранника; — довжина довгого ребра. Природний пірит (На правому зображенні показано кути грані)
Декартові координати вершинВісім вершин, що формують вершини куба, вписаного в многогранник, мають координати: (±1, ±1, ±1). При цьому довжина ребер куба дорівнює 2. Координати інших дванадцяти вершин: (0, ±(1 + h), ±(1 − h2)), (±(1 + h), ±(1 − h2), 0) та (±(1 − h2), 0, ±(1 + h)). де h — висота клиноподібного "даху" над гранями куба.
При h = 0 отримаємо вироджений піритоедр, що має форму куба, але з додатковими вершинами та ребрами на його гранях. При h = 1/2 (чверть довжини ребра куба), отримаємо «бездоганний» (з геометричної точки зору) кристал природного піриту.Також в цьому випадку многогранник є піритоедром у моделі Вейра — Фелана[en]. При h = 1/φ = √5 − 1/2= 0.618..., отримаємо правильний додекаедр. При h = 1 отримаємо вироджений піритоедр, у якого деякі вершини збігаються, а ребра між ними зменшуються до нульової довжини; він приймає форму ромбдодекаедра.
Геометричні варіаціїПіритоедр має деякий ступінь свободи у геометричній будові; при цьому на одній межі маємо куб, коли певні ребра стають колінеарними одне до одного, а на іншій межі маємо ромбододекаедр, коли 6 ребер вироджуються до нульової довжини. Правильний додекаедр являє собою особливий проміжний випадок, коли всі ребра і кути рівні. Можна перетнути ці граничні випадки, та отримати при цьому неопуклі піритоедри. Перетнувши нижню межу опуклого піритоедру, що має вигляд куба, отримаємо неопуклі його форми; неопуклий піритоедр з рівними сторонами (ендо-додекаедр) в поєднанні з опуклим правильним додекаедром може утворювати стільники, що замощують тривимірний простір без проміжків та накладень. Продовжуючи деформацію многогранника у цьому напрямку, ми проходимо через вироджений випадок, коли дванадцять вершин збігаються в центрі, і переходимо до правильного великого зірчастого додекаедра, в якого всі ребра і кути знову рівні, а грані приймають форму правильних пентаграм. Перетнувши верхню межу опуклого піритоедру, що має вигляд ромбододекаедра, отримаємо неопуклий рівносторонній додекаедр з рибоподібними рівносторонніми п'ятикутними гранями з самоперетином.
Тетартоїд
Тетартоїд (також тетрагональний п'ятикутний додекаедр [7] , пентагонтритетраедр [6] і тетраедричний пентагондодекаедр) — це додекаедр з хіральною тетраедричною симетрією (Т). Має 12 конгруентних п'ятикутних граней. Має 20 вершин, розділених на три типи; в кожній вершині сходяться три грані. Його 30 ребер також розділені на три типи — 12, 12 і 6 ребер однакової довжини. Осі обертової симетрії 5-го порядку відсутні, що дозволяє цьому многограннику бути формою для кристалів. Назва тетартоїд має грецьке коріння, та означає "четверта частина", оскільки він має одну четверту від повної октаедричної симетрії[en] і половину піритоедричної симетрії. [8] Таку форму симетрії (пентагон-тритетраедричну) може мати мінерал кобальтин.[9] Тетартоїд має два вироджених граничних випадки, які топологічно еквівалентні самому многограннику та мають його симетрію. Вони являють собою з одного боку — куб з додатковими ребрами на гранях (але не колінеарними до його ребер) та додатковими вершинами на ребрах куба; з іншого боку — тетраедр, кожне ребро якого поділено на три частини і кожна з двох нових вершин з'єднується з центром грані. (В нотації многогранників Конвея[en] це є скручений тетраедр). Ортографічні проєкції , центровані по осям симетрії 2-го та 3-го порядку
Вироджені форми тетартоїда — кубічна та тетраедрична
![]()
Декартові координати вершинНаступні точки є вершинами п'ятикутника тетартоїда з тетраедричною симетрією:
при наступних умовах:[10]
Геометричні варіаціїПравильний додекаедр є тетартоїдом, всі грані якого правильні п'ятикутники, тобто він має більш розширену симетрію, ніж необхідно для тетартоїда. Триакіс тетраедр є виродженим тетартоїдом, у якого 12 ребер зменшені до нульової довжини. (На рисунку основної таблиці вище: білі вершини і зелені ребра поглинуться зеленими вершинами.)
Двоїстий многогранник до скрученого трисхилого біантикупола![]() Ще одним прикладом додекаедра з п'ятиткутними гранями є двоїстий многогранник до трисхилого повернутого біантикупола, тобто многогранника, що отриманий шляхом з'єднання двох трисхилих антикуполів основами в повернутій орієнтації. Цей многогранник має D3d[en] симетрію, порядку 12. Його грані — дві групи з трьох конгруентних п'ятикутних граней розділені поясом з 6-ти конгруентних п'ятикутних граней, які поєднані між собою з чергуванням орієнтації. Ромбододекаедр![]() Ромбододекаедр — це додекаедр, що має дванадцять ромбічних граней та володіє октаедричною симетрією[en]. Він є зоноедром, а також двоїстим до квазіправильного кубооктаедра (архімедового тіла); зустрічається в природі у вигляді кристалів. Ромбододекаедр утворює стільники, що заповнюють тривимірний простір без проміжків та накладень. Ромбододекаедр можна розглядати як вироджений піритоедр, у якого 6 певних ребер зменшені до нуля, а отже, п'ятикутники перетворюються на ромбічні грані. Ромбододекаедр має кілька зірчастих форм, перша[en] з яких також утворює стільник для замощення простору. Інший важливий ромбододекаедр — додекаедр Білінського[en], має дванадцять граней, що конгруенті граням ромботриаконтаедра, тобто діагоналі знаходяться у співвідношенні золотого перетину. Він також є зоноедром і був описаний Білінським у 1960 році. [11] Цим многогранником можна замостити простір без проміжків та накладень, а також він може зустрічатися в неперіодичних стільниках разом з ромботриаконтаедром, ромбоікосаедром[en] і ромбогексаедром.[12] Деякі інші додекаедриЯк було зазначено вище, існує 6 384 634 топологічно різних опуклих додекаедрів, не враховуючи тих, що отримані шляхом дзеркального відбиття, з кількістю вершин від 8 до 20.[1] Деякі топологічно різні додекаедри (за винятком додекаедрів з п'ятикутними та ромбічними гранями):
Примітки
Література
Посилання
|
Portal di Ensiklopedia Dunia