Стільник (геометрія)
В геометрії стільник — це заповнення простору многогранниками, що не перетинаються, при якому не залишається незаповненого простору. Це узагальнення математичного поняття мозаїка або паркет на будь-яку розмірність. Стільники зазвичай розглядаються у звичайному евклідовому (плоскому) просторі. Їх можна також побудувати в неевклідових просторах, наприклад, гіперболічний стільник. Будь-який скінченний однорідний многогранник можна спроєктувати на його описану сферу, що дасть однорідний стільник у сферичному просторі. КласифікаціяІснує нескінченно багато стільників і вони можуть бути класифіковані лише частково. Найбільш правильні мозаїки отримують найбільший інтерес, хоча багатий і широкий набір інших мозаїк відкривається знову і знову. Найпростіші стільники формуються з шарів призм, побудованих з паркетів на площині. Зокрема, копії будь-якого паралелепіпеда можуть заповнити простір, при цьому кубічний стільник[en] є спеціальним випадком, оскільки тільки він утворює правильний стільник у звичайному (евклідовому) просторі. Іншим цікавим прикладом є тетраедр Гілла[en] і його узагальнення, які також утворюють мозаїку в просторі. Однорідний тривимірний стільникТривимірний однорідний стільник — це стільник у тривимірному просторі, складений з однорідних многогранників, що мають однакові вершини (тобто група ізометрій тривимірного простору, що зберігає мозаїку, є транзитивною на вершинах). Існує 28 прикладів опуклих мозаїк у тривимірному евклідовому просторі[1], званих також архімедовими стільниками[en]. Стільник називають правильним, якщо група ізометрій, що зберігає мозаїку, діє транзитивно на прапори, де прапор — це вершина, яка лежить на ребрі, яке належить грані (всі разом). Будь-який правильний стільник є автоматично однорідним. Однак існує всього один вид правильних стільників у тривимірному евклідовому просторі — кубічний стільник. Двоє стільників є квазіправильними (зробленими з двох типів правильних комірок):
Тетраедрично-октаедричний стільник[en] і повернутий тетраедрично-октаедричний стільник складаються з шарів, утворених 3-ма або 2-ма положеннями тетраедрів і октаедрів. Нескінченне число унікальних стільників можна отримати шляхом різного чергування цих шарів. Многогранники, що заповнюють простірПро тривимірний стільник, всі комірки якого ідентичні, включно з симетрією, кажуть як про комірково-транзитивний або ізохорний. Про комірку такого стільника кажуть як про многогранник, що заповнює простір[2]. Тільки п'ять многогранників, що заповнюють простір, можуть заповнити 3-мірний евклідів простір з використанням тільки паралельного перенесення. Їх називають параллелогранниками[en]:
Інші відомі приклади:
Інші стільники з двома і більше многогранникамиІноді два[9] і більше різних многогранники можна скомбінувати, щоб заповнити простір. Добре відомим прикладом слугує структура Вейра — Фелана[en], запозичена зі структури кристалів клатратного гідрату [10]. Структура Вейра — -Фелана (з двома типами комірок) Неопуклі тривимірні стільники
Гіперболічні стільникиУ тривимірному гіперболічному просторі двогранний кут многогранника залежить від розміру многогранника. Правильні гіперболічні стільники включають два види з чотирма або п'ятьма додекаедрами, які мають спільні ребра. Їхні двогранні кути тоді будуть π/2 2π/5, обидва менші, ніж у евклідового додекаедра. За винятком цього ефекту гіперболічні стільники відповідають тим самим вимогам, що й евклідові стільники і многогранники. Досліджено 4 види компактних правильних гіперболічних стільників[ru] і багато однорідних гіперболічних стільників[en]. Двоїстість стільників у тривимірному просторіДля будь-якого стільника є двоїсті стільники, які можуть бути отримані обміном:
Для правильних стільників:
Самодвоїсті стільникиСтільники можуть бути самодвоїстими[ru]. Всі n-вимірні гіперкубічні стільники[ru] з символами Шлефлі {4,3n-2,4} самодвоїсті. Див. такожПримітки
Література
Посилання
|