Обертова симетрія
Обертальна симетрія, також відома в біології як радіальна симетрія, — це властивість форми, коли вона виглядає однаково після деякого обертання частковим поворотом. Ступінь обертальної симетрії об'єкта — це кількість чітких обертів, у яких він виглядає абсолютно однаковим для кожного положення. Формальне трактуванняФормально обертальна симетрія є симетрією відносно деяких або всіх обертань у m -вимірному евклідовому просторі . Повороти — це прямі ізометрії, тобто ізометрії, що зберігають орієнтацію . Отже, група симетрії обертової симетрії є підгрупою E + (m) (див. Групу Евкліда). Симетрія всіх обертань відносно всіх точок передбачає поступальну симетрію щодо всіх трансляцій, тому простір однорідний, а група симетрії — це ціле E (m). З модифікованим поняттям симетрії для векторних полів група симетрії також може бути E + (m). Для симетрії обертань навколо точки ми можемо взяти дану точку за початок. Ці обертання утворюють спеціальну ортогональну групу SO (m), групу m × m ортогональних матриць з детермінантом 1. Для m = 3 це група обертання SO (3) . В іншому визначенні слова, групою обертання об'єкта є група симетрії в межах E + (n), група прямих ізометрій ; іншими словами, перетин групи повної симетрії та групи прямих ізометрій. Для хіральних об'єктів це те саме, що і повна група симетрії. Закони фізики SO (3) -інваріантні, якщо вони не розрізняють різних напрямків у просторі. Через теорему Нетера обертальна симетрія фізичної системи еквівалентна закону збереження моменту імпульсу . Дискретна обертальна симетріяОбертальна симетрія порядку n, також звана n- кратною симетрією обертання або дискретною симетрією обертання n- го порядку щодо певної точки (у 2D) або осі (у 3D) означає, що обертання на кут 360 ° / n (180 °, 120 °, 90 °, 72 °, 60 °, 51 ° і т. д.) не змінює об'єкт. «1-кратна» симетрія — це відсутність симетрії (всі об'єкти виглядають однаково після обертання на 360 °). Позначення n- кратної симетрії дорівнює C n або просто " n ". Фактична група симетрії визначається точкою або віссю симетрії разом з n . Для кожної точки або осі симетрії абстрактним типом групи є циклічна група порядку n, Z n . Хоча для останнього також використовується позначення C n, слід розрізняти геометричний та абстрактний C n : існують інші групи симетрії того самого типу абстрактної групи, які геометрично відрізняються, див. Групи циклічної симетрії у 3D . Основним доменом є сектор 360 ° / п. Приклади без додаткової симетрії відображення :
C n — група обертання правильного n- бічного багатокутника в 2D та регулярної n- сторонній піраміди в 3D. Якщо існує, наприклад, обертальна симетрія відносно кута 100 °, то також щодо одного з 20 °, найбільшого спільного дільника 100 ° та 360 °. Типовий тривимірний об'єкт із симетрією обертання (можливо, також з перпендикулярними осями), але без дзеркальної симетрії, є гвинтом . Приклади
Кілька осей симетрії через одну і ту ж точкуДля дискретної симетрії з кількома осями симетрії через одну точку існують такі можливості:
У випадку з платонівськими твердими тілами 2-кратні осі проходять через середини протилежних ребер, і їх кількість становить половину числа ребер. Інші осі проходять через протилежні вершини та через центри протилежних граней, за винятком випадку тетраедра, де 3-кратні осі проходять через одну вершину та центр однієї грані. Обертальна симетрія щодо будь-якого кутаОбертальна симетрія відносно будь-якого кута є, у двох вимірах, круговою симетрією . Фундаментальним доменом є напівлінія . У трьох вимірах ми можемо розрізнити циліндричну симетрію та сферичну симетрію (без змін при обертанні навколо однієї осі або при будь-якому обертанні). Тобто, відсутність залежності від кута за допомогою циліндричних координат і відсутність залежності від будь-якого кута за допомогою сферичних координат . Основною областю є напівплощина через вісь і радіальна напівлінія відповідно. Осісиметрична - це прикметники, що відносяться до об'єкта, що має циліндричну симетрію, або осесиметрію (тобто обертальну симетрію відносно центральної осі), як пончик (тор). Прикладом приблизної сферичної симетрії є Земля (щодо щільності та інших фізико-хімічних властивостей). 4D безперервна або дискретна обертальна симетрія відносно площини відповідає 2D обертальній симетрії в кожній перпендикулярній площині, відносно точки перетину. Об'єкт може також мати обертальну симетрію навколо двох перпендикулярних площин, наприклад, якщо це декартовий добуток двох обертально-симетричних 2D фігур, як, наприклад, у випадку дуоциліндра та різних регулярних дуопризьм . Обертальна симетрія з поступальною симетрією
Двократна обертальна симетрія разом з одиночною поступальною симетрією є однією з груп Фріза . На одну примітивну клітину припадає два ротоцентри. Разом із подвійною поступальною симетрією групами обертання є наступні групи шпалер з осями на примітивну комірку:
Масштабування решітки це — поділ кількості точок на одиницю площі і на квадрат масштабного коефіцієнта. Отже, кількість 2-, 3-, 4- та 6-кратних ротоцентрів на примітивну клітину становить відповідно 4, 3, 2 та 1, знову ж включаючи 4-кратний як особливий випадок 2-кратного тощо. 3-кратна симетрія обертання в одній точці та 2-кратна в іншій (або, наприклад, у 3D відносно паралельних осей) передбачає групу обертання p6, тобто подвійну поступальну симетрію та 6-кратну обертальну симетрію в якійсь точці (або, в 3D, паралельна вісь). Довжина перекладу для симетрії, відтвореною однією такою парою ротоцентрів, становить помножена на відстань між ними. Дивитися також
Список літератури
Посилання
|
Portal di Ensiklopedia Dunia