PERGURUAN TINGGI
JURNAL
PERGURUAN TINGGI
JURNAL
JURNAL
BIDANG ILMU
TAHUN TERBIT
KEYWORD - KATA KUNCI
Search Jurnal
双曲線関数の原始関数の一覧
この記事は
検証可能
な
参考文献や出典
が全く示されていないか、不十分です。
出典を追加
して記事の信頼性向上にご協力ください。
(
このテンプレートの使い方
)
出典検索
?
:
"双曲線関数の原始関数の一覧"
–
ニュース
·
書籍
·
スカラー
·
CiNii
·
J-STAGE
·
NDL
·
dlib.jp
·
ジャパンサーチ
·
TWL
(
2023年10月
)
本項は、
双曲線関数
の
原始関数
の一覧である。さらに完全な原始関数の一覧は、
原始関数の一覧
を参照のこと。
全ての公式で、定数aはゼロではない。また、Cは積分定数を表す。
∫
sinh
a
x
d
x
=
1
a
cosh
a
x
+
C
{\displaystyle \int \sinh ax\,dx={\frac {1}{a}}\cosh ax+C\,}
∫
cosh
a
x
d
x
=
1
a
sinh
a
x
+
C
{\displaystyle \int \cosh ax\,dx={\frac {1}{a}}\sinh ax+C\,}
∫
sinh
2
a
x
d
x
=
1
4
a
sinh
2
a
x
−
x
2
+
C
{\displaystyle \int \sinh ^{2}ax\,dx={\frac {1}{4a}}\sinh 2ax-{\frac {x}{2}}+C\,}
∫
cosh
2
a
x
d
x
=
1
4
a
sinh
2
a
x
+
x
2
+
C
{\displaystyle \int \cosh ^{2}ax\,dx={\frac {1}{4a}}\sinh 2ax+{\frac {x}{2}}+C\,}
∫
tanh
2
a
x
d
x
=
x
−
tanh
a
x
a
+
C
{\displaystyle \int \tanh ^{2}ax\,dx=x-{\frac {\tanh ax}{a}}+C\,}
∫
sinh
n
a
x
d
x
=
1
a
n
sinh
n
−
1
a
x
cosh
a
x
−
n
−
1
n
∫
sinh
n
−
2
a
x
d
x
(for
n
>
0
)
{\displaystyle \int \sinh ^{n}ax\,dx={\frac {1}{an}}\sinh ^{n-1}ax\cosh ax-{\frac {n-1}{n}}\int \sinh ^{n-2}ax\,dx\qquad {\mbox{(for }}n>0{\mbox{)}}\,}
also:
∫
sinh
n
a
x
d
x
=
1
a
(
n
+
1
)
sinh
n
+
1
a
x
cosh
a
x
−
n
+
2
n
+
1
∫
sinh
n
+
2
a
x
d
x
(for
n
<
0
,
n
≠
−
1
)
{\displaystyle \int \sinh ^{n}ax\,dx={\frac {1}{a(n+1)}}\sinh ^{n+1}ax\cosh ax-{\frac {n+2}{n+1}}\int \sinh ^{n+2}ax\,dx\qquad {\mbox{(for }}n<0{\mbox{, }}n\neq -1{\mbox{)}}\,}
∫
cosh
n
a
x
d
x
=
1
a
n
sinh
a
x
cosh
n
−
1
a
x
+
n
−
1
n
∫
cosh
n
−
2
a
x
d
x
(for
n
>
0
)
{\displaystyle \int \cosh ^{n}ax\,dx={\frac {1}{an}}\sinh ax\cosh ^{n-1}ax+{\frac {n-1}{n}}\int \cosh ^{n-2}ax\,dx\qquad {\mbox{(for }}n>0{\mbox{)}}\,}
also:
∫
cosh
n
a
x
d
x
=
−
1
a
(
n
+
1
)
sinh
a
x
cosh
n
+
1
a
x
−
n
+
2
n
+
1
∫
cosh
n
+
2
a
x
d
x
(for
n
<
0
,
n
≠
−
1
)
{\displaystyle \int \cosh ^{n}ax\,dx=-{\frac {1}{a(n+1)}}\sinh ax\cosh ^{n+1}ax-{\frac {n+2}{n+1}}\int \cosh ^{n+2}ax\,dx\qquad {\mbox{(for }}n<0{\mbox{, }}n\neq -1{\mbox{)}}\,}
∫
d
x
sinh
a
x
=
1
a
ln
|
tanh
a
x
2
|
+
C
{\displaystyle \int {\frac {dx}{\sinh ax}}={\frac {1}{a}}\ln \left|\tanh {\frac {ax}{2}}\right|+C\,}
also:
∫
d
x
sinh
a
x
=
1
a
ln
|
cosh
a
x
−
1
sinh
a
x
|
+
C
{\displaystyle \int {\frac {dx}{\sinh ax}}={\frac {1}{a}}\ln \left|{\frac {\cosh ax-1}{\sinh ax}}\right|+C\,}
also:
∫
d
x
sinh
a
x
=
1
a
ln
|
sinh
a
x
cosh
a
x
+
1
|
+
C
{\displaystyle \int {\frac {dx}{\sinh ax}}={\frac {1}{a}}\ln \left|{\frac {\sinh ax}{\cosh ax+1}}\right|+C\,}
also:
∫
d
x
sinh
a
x
=
1
a
ln
|
cosh
a
x
−
1
cosh
a
x
+
1
|
+
C
{\displaystyle \int {\frac {dx}{\sinh ax}}={\frac {1}{a}}\ln \left|{\frac {\cosh ax-1}{\cosh ax+1}}\right|+C\,}
∫
d
x
cosh
a
x
=
2
a
arctan
e
a
x
+
C
=
1
a
gd
(
a
x
)
+
C
gd
x
{\displaystyle \int {\frac {dx}{\cosh ax}}={\frac {2}{a}}\arctan e^{ax}+C={\frac {1}{a}}\operatorname {gd} (ax)+C\quad \operatorname {gd} x}
:
グーデルマン関数
∫
d
x
sinh
n
a
x
=
−
cosh
a
x
a
(
n
−
1
)
sinh
n
−
1
a
x
−
n
−
2
n
−
1
∫
d
x
sinh
n
−
2
a
x
(for
n
≠
1
)
{\displaystyle \int {\frac {dx}{\sinh ^{n}ax}}=-{\frac {\cosh ax}{a(n-1)\sinh ^{n-1}ax}}-{\frac {n-2}{n-1}}\int {\frac {dx}{\sinh ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,}
∫
d
x
cosh
n
a
x
=
sinh
a
x
a
(
n
−
1
)
cosh
n
−
1
a
x
+
n
−
2
n
−
1
∫
d
x
cosh
n
−
2
a
x
(for
n
≠
1
)
{\displaystyle \int {\frac {dx}{\cosh ^{n}ax}}={\frac {\sinh ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cosh ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,}
∫
cosh
n
a
x
sinh
m
a
x
d
x
=
cosh
n
−
1
a
x
a
(
n
−
m
)
sinh
m
−
1
a
x
+
n
−
1
n
−
m
∫
cosh
n
−
2
a
x
sinh
m
a
x
d
x
(for
m
≠
n
)
{\displaystyle \int {\frac {\cosh ^{n}ax}{\sinh ^{m}ax}}dx={\frac {\cosh ^{n-1}ax}{a(n-m)\sinh ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\cosh ^{n-2}ax}{\sinh ^{m}ax}}dx\qquad {\mbox{(for }}m\neq n{\mbox{)}}\,}
also:
∫
cosh
n
a
x
sinh
m
a
x
d
x
=
−
cosh
n
+
1
a
x
a
(
m
−
1
)
sinh
m
−
1
a
x
+
n
−
m
+
2
m
−
1
∫
cosh
n
a
x
sinh
m
−
2
a
x
d
x
(for
m
≠
1
)
{\displaystyle \int {\frac {\cosh ^{n}ax}{\sinh ^{m}ax}}dx=-{\frac {\cosh ^{n+1}ax}{a(m-1)\sinh ^{m-1}ax}}+{\frac {n-m+2}{m-1}}\int {\frac {\cosh ^{n}ax}{\sinh ^{m-2}ax}}dx\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,}
also:
∫
cosh
n
a
x
sinh
m
a
x
d
x
=
−
cosh
n
−
1
a
x
a
(
m
−
1
)
sinh
m
−
1
a
x
+
n
−
1
m
−
1
∫
cosh
n
−
2
a
x
sinh
m
−
2
a
x
d
x
(for
m
≠
1
)
{\displaystyle \int {\frac {\cosh ^{n}ax}{\sinh ^{m}ax}}dx=-{\frac {\cosh ^{n-1}ax}{a(m-1)\sinh ^{m-1}ax}}+{\frac {n-1}{m-1}}\int {\frac {\cosh ^{n-2}ax}{\sinh ^{m-2}ax}}dx\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,}
∫
sinh
m
a
x
cosh
n
a
x
d
x
=
sinh
m
−
1
a
x
a
(
m
−
n
)
cosh
n
−
1
a
x
+
m
−
1
n
−
m
∫
sinh
m
−
2
a
x
cosh
n
a
x
d
x
(for
m
≠
n
)
{\displaystyle \int {\frac {\sinh ^{m}ax}{\cosh ^{n}ax}}dx={\frac {\sinh ^{m-1}ax}{a(m-n)\cosh ^{n-1}ax}}+{\frac {m-1}{n-m}}\int {\frac {\sinh ^{m-2}ax}{\cosh ^{n}ax}}dx\qquad {\mbox{(for }}m\neq n{\mbox{)}}\,}
also:
∫
sinh
m
a
x
cosh
n
a
x
d
x
=
sinh
m
+
1
a
x
a
(
n
−
1
)
cosh
n
−
1
a
x
+
m
−
n
+
2
n
−
1
∫
sinh
m
a
x
cosh
n
−
2
a
x
d
x
(for
n
≠
1
)
{\displaystyle \int {\frac {\sinh ^{m}ax}{\cosh ^{n}ax}}dx={\frac {\sinh ^{m+1}ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {m-n+2}{n-1}}\int {\frac {\sinh ^{m}ax}{\cosh ^{n-2}ax}}dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,}
also:
∫
sinh
m
a
x
cosh
n
a
x
d
x
=
−
sinh
m
−
1
a
x
a
(
n
−
1
)
cosh
n
−
1
a
x
+
m
−
1
n
−
1
∫
sinh
m
−
2
a
x
cosh
n
−
2
a
x
d
x
(for
n
≠
1
)
{\displaystyle \int {\frac {\sinh ^{m}ax}{\cosh ^{n}ax}}dx=-{\frac {\sinh ^{m-1}ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {m-1}{n-1}}\int {\frac {\sinh ^{m-2}ax}{\cosh ^{n-2}ax}}dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,}
∫
x
sinh
a
x
d
x
=
1
a
x
cosh
a
x
−
1
a
2
sinh
a
x
+
C
{\displaystyle \int x\sinh ax\,dx={\frac {1}{a}}x\cosh ax-{\frac {1}{a^{2}}}\sinh ax+C\,}
∫
x
cosh
a
x
d
x
=
1
a
x
sinh
a
x
−
1
a
2
cosh
a
x
+
C
{\displaystyle \int x\cosh ax\,dx={\frac {1}{a}}x\sinh ax-{\frac {1}{a^{2}}}\cosh ax+C\,}
∫
x
2
cosh
a
x
d
x
=
−
2
x
cosh
a
x
a
2
+
(
x
2
a
+
2
a
3
)
sinh
a
x
+
C
{\displaystyle \int x^{2}\cosh ax\,dx=-{\frac {2x\cosh ax}{a^{2}}}+\left({\frac {x^{2}}{a}}+{\frac {2}{a^{3}}}\right)\sinh ax+C\,}
∫
tanh
a
x
d
x
=
1
a
ln
|
cosh
a
x
|
+
C
{\displaystyle \int \tanh ax\,dx={\frac {1}{a}}\ln |\cosh ax|+C\,}
∫
coth
a
x
d
x
=
1
a
ln
|
sinh
a
x
|
+
C
{\displaystyle \int \coth ax\,dx={\frac {1}{a}}\ln |\sinh ax|+C\,}
∫
tanh
n
a
x
d
x
=
−
1
a
(
n
−
1
)
tanh
n
−
1
a
x
+
∫
tanh
n
−
2
a
x
d
x
(for
n
≠
1
)
{\displaystyle \int \tanh ^{n}ax\,dx=-{\frac {1}{a(n-1)}}\tanh ^{n-1}ax+\int \tanh ^{n-2}ax\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,}
∫
coth
n
a
x
d
x
=
−
1
a
(
n
−
1
)
coth
n
−
1
a
x
+
∫
coth
n
−
2
a
x
d
x
(for
n
≠
1
)
{\displaystyle \int \coth ^{n}ax\,dx=-{\frac {1}{a(n-1)}}\coth ^{n-1}ax+\int \coth ^{n-2}ax\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,}
∫
sinh
a
x
sinh
b
x
d
x
=
1
a
2
−
b
2
(
a
sinh
b
x
cosh
a
x
−
b
cosh
b
x
sinh
a
x
)
+
C
(for
a
2
≠
b
2
)
{\displaystyle \int \sinh ax\sinh bx\,dx={\frac {1}{a^{2}-b^{2}}}(a\sinh bx\cosh ax-b\cosh bx\sinh ax)+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}\,}
∫
cosh
a
x
cosh
b
x
d
x
=
1
a
2
−
b
2
(
a
sinh
a
x
cosh
b
x
−
b
sinh
b
x
cosh
a
x
)
+
C
(for
a
2
≠
b
2
)
{\displaystyle \int \cosh ax\cosh bx\,dx={\frac {1}{a^{2}-b^{2}}}(a\sinh ax\cosh bx-b\sinh bx\cosh ax)+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}\,}
∫
cosh
a
x
sinh
b
x
d
x
=
1
a
2
−
b
2
(
a
sinh
a
x
sinh
b
x
−
b
cosh
a
x
cosh
b
x
)
+
C
(for
a
2
≠
b
2
)
{\displaystyle \int \cosh ax\sinh bx\,dx={\frac {1}{a^{2}-b^{2}}}(a\sinh ax\sinh bx-b\cosh ax\cosh bx)+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}\,}
∫
sinh
(
a
x
+
b
)
sin
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
cosh
(
a
x
+
b
)
sin
(
c
x
+
d
)
−
c
a
2
+
c
2
sinh
(
a
x
+
b
)
cos
(
c
x
+
d
)
+
C
{\displaystyle \int \sinh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+C\,}
∫
sinh
(
a
x
+
b
)
cos
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
cosh
(
a
x
+
b
)
cos
(
c
x
+
d
)
+
c
a
2
+
c
2
sinh
(
a
x
+
b
)
sin
(
c
x
+
d
)
+
C
{\displaystyle \int \sinh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)+C\,}
∫
cosh
(
a
x
+
b
)
sin
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
sinh
(
a
x
+
b
)
sin
(
c
x
+
d
)
−
c
a
2
+
c
2
cosh
(
a
x
+
b
)
cos
(
c
x
+
d
)
+
C
{\displaystyle \int \cosh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+C\,}
∫
cosh
(
a
x
+
b
)
cos
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
sinh
(
a
x
+
b
)
cos
(
c
x
+
d
)
+
c
a
2
+
c
2
cosh
(
a
x
+
b
)
sin
(
c
x
+
d
)
+
C
{\displaystyle \int \cosh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)+C\,}
表
話
編
歴
原始関数の一覧
有理関数
無理関数
三角関数
逆三角関数
双曲線関数
逆双曲線関数
指数関数
対数関数
ガウス関数
表
話
編
歴
微分積分学
Precalculus
二項定理
凹関数
連続関数
階乗
有限差分
自由変数と束縛変数
基本定理
関数のグラフ
線型関数
平均値の定理
ラジアン
ロルの定理
割線
傾き
接線
極限
不定形
(
英語版
)
関数の極限
片側極限
数列の極限
数列の加速法
近似のオーダー
(
英語版
)
ε-δ論法
微分法
連鎖律
導関数
微分
微分方程式
微分作用素
陰関数微分
逆関数の微分
(
英語版
)
ロピタルの定理
ライプニッツ則
対数微分
平均値の定理
ニュートン法
記法
ライプニッツの記法
ニュートンの記法
レギオモンタヌスの問題
相対変化率
(
英語版
)
基本法則
線型性
(
英語版
)
積
商
冪函数
(
英語版
)
停留点
極値の判定
(
英語版
)
最大値の定理
極値
テイラーの定理
積分法
逆微分
弧長
積分定数
積分記号下の微分
(
英語版
)
微分積分学の基本定理
正割の立方の積分
(
英語版
)
正割関数の積分
(
英語版
)
半角正接置換
積分における部分分数
(
英語版
)
二次有理式の積分
(
英語版
)
円周率が22/7より小さいことの証明
基本法則
線型性
(
英語版
)
部分積分
置換積分
台形公式
三角函数置換法
(
英語版
)
ベクトル解析
回転
方向微分
発散
発散定理
勾配
勾配定理
(
英語版
)
グリーンの定理
ラプラシアン
ストークスの定理
多変数微分積分学
曲率
Disc integration
(
英語版
)
発散定理
外微分
ガブリエルのホルン
幾何解析
(
英語版
)
ヘッセ行列
ヤコビ行列と行列式
線積分
Matrix calculus
多重積分
偏微分
バウムクーヘン積分
面積分
テンソル解析
体積分
級数
アーベルの判定法
(
英語版
)
交代
交代級数判定法
(
英語版
)
算術幾何数列
二項
コーシーの凝集判定法
比較判定法
ディリクレの判定法
オイラー–マクローリンの公式
フーリエ
幾何
超幾何
q超幾何
調和
無限
積分判定法
極限比較判定法
(
英語版
)
マクローリン
冪
比判定法
冪根判定法
テイラー
項判定法
(
英語版
)
特殊関数
と数学定数
ベルヌーイ数
ネイピア数
オイラー定数
指数関数
自然対数
ガンマ関数
スターリングの近似
楕円関数
歴史
(
英語版
)
擬等式
(
英語版
)
ブルック・テイラー
コリン・マクローリン
代数の一般性
(
英語版
)
ゴットフリート・ヴィルヘルム・ライプニッツ
無限小
無限小解析
(
英語版
)
アイザック・ニュートン
連続の法則
(
英語版
)
レオンハルト・オイラー
『
流率法
』 (
流率
(
英語版
)
)
『
方法
(
英語版
)
』
一覧
微分法則
(
英語版
)
指数関数の原始関数
双曲線関数の原始関数
逆双曲線関数の原始関数
逆三角関数の原始関数
無理関数の原始関数
対数関数の原始関数
有理関数の原始関数
三角関数の原始関数
ガウス関数の原始関数
極限
数学記号
原始関数
カテゴリ
Index:
pl
ar
de
en
es
fr
it
arz
nl
ja
pt
ceb
sv
uk
vi
war
zh
ru
af
ast
az
bg
zh-min-nan
bn
be
ca
cs
cy
da
et
el
eo
eu
fa
gl
ko
hi
hr
id
he
ka
la
lv
lt
hu
mk
ms
min
no
nn
ce
uz
kk
ro
simple
sk
sl
sr
sh
fi
ta
tt
th
tg
azb
tr
ur
zh-yue
hy
my
ace
als
am
an
hyw
ban
bjn
map-bms
ba
be-tarask
bcl
bpy
bar
bs
br
cv
nv
eml
hif
fo
fy
ga
gd
gu
hak
ha
hsb
io
ig
ilo
ia
ie
os
is
jv
kn
ht
ku
ckb
ky
mrj
lb
lij
li
lmo
mai
mg
ml
zh-classical
mr
xmf
mzn
cdo
mn
nap
new
ne
frr
oc
mhr
or
as
pa
pnb
ps
pms
nds
crh
qu
sa
sah
sco
sq
scn
si
sd
szl
su
sw
tl
shn
te
bug
vec
vo
wa
wuu
yi
yo
diq
bat-smg
zu
lad
kbd
ang
smn
ab
roa-rup
frp
arc
gn
av
ay
bh
bi
bo
bxr
cbk-zam
co
za
dag
ary
se
pdc
dv
dsb
myv
ext
fur
gv
gag
inh
ki
glk
gan
guw
xal
haw
rw
kbp
pam
csb
kw
km
kv
koi
kg
gom
ks
gcr
lo
lbe
ltg
lez
nia
ln
jbo
lg
mt
mi
tw
mwl
mdf
mnw
nqo
fj
nah
na
nds-nl
nrm
nov
om
pi
pag
pap
pfl
pcd
krc
kaa
ksh
rm
rue
sm
sat
sc
trv
stq
nso
sn
cu
so
srn
kab
roa-tara
tet
tpi
to
chr
tum
tk
tyv
udm
ug
vep
fiu-vro
vls
wo
xh
zea
ty
ak
bm
ch
ny
ee
ff
got
iu
ik
kl
mad
cr
pih
ami
pwn
pnt
dz
rmy
rn
sg
st
tn
ss
ti
din
chy
ts
kcg
ve
Prefix:
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
0
1
2
3
4
5
6
7
8
9
Portal di Ensiklopedia Dunia
Agama
Bahasa
Biografi
Budaya
Ekonomi
Elektronika
Film
Filsafat
Geografi
Indonesia
Ilmu
Lingkungan
Masyarakat
Matematika
Militer
Mitologi
Musik
Olahraga
Pendidikan
Politik
Sastra
Sejarah
Seni
Teknologi