ガウス関数の原始関数の一覧(ガウスかんすうのげんしかんすうのいちらん)はガウス関数を含む式の原始関数の一覧である。
以下
![{\displaystyle \phi (x)={\frac {1}{\sqrt {2\pi }}}e^{-{\frac {1}{2}}x^{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6d450a40cb2eb55874a410c9f82dc74e16591f0c)
を標準正規確率密度関数、
![{\displaystyle \Phi (x)=\int _{-\infty }^{x}\phi (t)dt={\frac {1}{2}}\left(1+\operatorname {erf} \left({\frac {x}{\sqrt {2}}}\right)\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d230b71f092ee2c20fe8156773a557c54bf71b8c)
をその累積分布関数(erf は誤差関数)とする。また
![{\displaystyle T(h,a)=\phi (h)\int _{0}^{a}{\frac {\phi (hx)}{1+x^{2}}}\,dx}](https://wikimedia.org/api/rest_v1/media/math/render/svg/75057efab4cf58e6416ab44f7470da85c7fd7e68)
はオーウェンのT関数(英語版)として知られるものである。
Owen (1980) に幅広いガウス型積分の一覧がある。以下にその一部を示す。
不定積分
n!! は二重階乗である。
![{\displaystyle \int \phi (x)\,dx=\Phi (x)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3acefce0f6cbb8d721319816d0a848943f19b377)
![{\displaystyle \int x\phi (x)\,dx=-\phi (x)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9ac0eb9ac75c8babf6347e41236a567c3d7f7cf0)
![{\displaystyle \int x^{2}\phi (x)\,dx=\Phi (x)-x\phi (x)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/62ed70e65ae0779820870c11623914f753480d93)
![{\displaystyle \int x^{2k+1}\phi (x)\,dx=-\phi (x)\sum _{j=0}^{k}{\frac {(2k)!!}{(2j)!!}}x^{2j}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/018569c34a57437d5f16edb08c63548113144e50)
![{\displaystyle \int x^{2k+2}\phi (x)\,dx=-\phi (x)\sum _{j=0}^{k}{\frac {(2k+1)!!}{(2j+1)!!}}x^{2j+1}+(2k+1)!!\,\Phi (x)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/57c330b134e53c46a01575a0a3ae5528c1bbc815)
![{\displaystyle \int \phi (x)^{2}\,dx={\frac {1}{2{\sqrt {\pi }}}}\Phi \left(x{\sqrt {2}}\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e276f224dcf5d1498b9dcb4dff6c9fa08b7a8daa)
![{\displaystyle \int \phi (x)\phi (a+bx)\,dx={\frac {1}{t}}\phi \left({\frac {a}{t}}\right)\Phi \left(tx+{\frac {ab}{t}}\right)+C,\qquad t={\sqrt {1+b^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/df17aa01340dab10ea97fc6005961f72f8a995c4)
![{\displaystyle \int x\phi (a+bx)\,dx=-{\frac {1}{b^{2}}}\left(\phi (a+bx)+a\Phi (a+bx)\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ae0ad04cc568b8dd97b1579437b8a65ef4258c1b)
![{\displaystyle \int x^{2}\phi (a+bx)\,dx={\frac {1}{b^{3}}}\left((a^{2}+1)\Phi (a+bx)+(a-bx)\phi (a+bx)\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/97fc46611ae7e24a41ab190827c80b82750bb8d8)
![{\displaystyle \int \phi (a+bx)^{n}\,dx={\frac {1}{b{\sqrt {n(2\pi )^{n-1}}}}}\Phi \left({\sqrt {n}}(a+bx)\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/906b0559ea6f74f4e5c1765652b2d3cd88381faf)
![{\displaystyle \int \Phi (a+bx)\,dx={\frac {1}{b}}\left((a+bx)\Phi (a+bx)+\phi (a+bx)\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fec8f2ccd2fb9e8e7c39ac96eb74eba40e37a124)
![{\displaystyle \int x\Phi (a+bx)\,dx={\frac {1}{2b^{2}}}\left((b^{2}x^{2}-a^{2}-1)\Phi (a+bx)+(bx-a)\phi (a+bx)\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/76db1774e0604bfa07dac80e2dc8feb1e52ec3b1)
![{\displaystyle \int x^{2}\Phi (a+bx)\,dx={\frac {1}{3b^{3}}}\left((b^{3}x^{3}+a^{3}+3a)\Phi (a+bx)+(b^{2}x^{2}-abx+a^{2}+2)\phi (a+bx)\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6c9299db9ca581186784f82af9876795a6988dc9)
![{\displaystyle \int x^{n}\Phi (x)\,dx={\frac {1}{n+1}}\left(\left(x^{n+1}-nx^{n-1}\right)\Phi (x)+x^{n}\phi (x)+n(n-1)\int x^{n-2}\Phi (x)\,dx\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/63ec59dd9e2087434f3c55c926f9e6d55eb4a7b7)
![{\displaystyle \int x\phi (x)\Phi (a+bx)\,dx={\frac {b}{t}}\phi \left({\frac {a}{t}}\right)\Phi \left(xt+{\frac {ab}{t}}\right)-\phi (x)\Phi (a+bx)+C,\qquad t={\sqrt {1+b^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c72cac1798418354f1190712b39d2946598de0e2)
![{\displaystyle \int \Phi (x)^{2}\,dx=x\Phi (x)^{2}+2\Phi (x)\phi (x)-{\frac {1}{\sqrt {\pi }}}\Phi \left(x{\sqrt {2}}\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3454e64f512db7d6e683bbd8daeb44540eb0582e)
![{\displaystyle \int e^{cx}\phi (bx)^{n}\,dx={\frac {e^{\frac {c^{2}}{2nb^{2}}}}{b{\sqrt {n(2\pi )^{n-1}}}}}\Phi \left({\frac {b^{2}xn-c}{b{\sqrt {n}}}}\right)+C,\qquad b\neq 0,n>0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/01a646eb22b0d0ec5f9be7c76db802ba67920aa2)
定積分
![{\displaystyle \int _{-\infty }^{\infty }x^{2}\phi (x)^{n}\,dx={\frac {1}{\sqrt {n^{3}(2\pi )^{n-1}}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d9cb4e3dcc39f0d87ea88146bc9b5c22860ae0f3)
![{\displaystyle \int _{-\infty }^{0}\phi (ax)\Phi (bx)dx={\frac {1}{2\pi |a|}}\left({\frac {\pi }{2}}-\arctan \left({\frac {b}{|a|}}\right)\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/38fc41d6f576708c876687c60d2608ebe39c1837)
![{\displaystyle \int _{0}^{\infty }\phi (ax)\Phi (bx)\,dx={\frac {1}{2\pi |a|}}\left({\frac {\pi }{2}}+\arctan \left({\frac {b}{|a|}}\right)\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dc184b8a7d5213f9ee009a2630b591c4819830a0)
![{\displaystyle \int _{0}^{\infty }x\phi (x)\Phi (bx)\,dx={\frac {1}{2{\sqrt {2\pi }}}}\left(1+{\frac {b}{\sqrt {1+b^{2}}}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5213dd94140ba412094ee1cdc733bad9698c4983)
![{\displaystyle \int _{0}^{\infty }x^{2}\phi (x)\Phi (bx)\,dx={\frac {1}{4}}+{\frac {1}{2\pi }}\left({\frac {b}{1+b^{2}}}+\arctan(b)\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/36fc47fc9248cd2d88dff95e4855874dc0e5f571)
![{\displaystyle \int _{0}^{\infty }x\phi (x)^{2}\Phi (x)\,dx={\frac {1}{4\pi {\sqrt {3}}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3ef1d2c642dac1f8984abf5167934741e178f58f)
![{\displaystyle \int _{0}^{\infty }\Phi (bx)^{2}\phi (x)\,dx={\frac {1}{2\pi }}\left(\arctan(b)+\arctan {\sqrt {1+2b^{2}}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/871acfb7fb5dba113d8703f41e88e0872552fb4d)
![{\displaystyle \int _{-\infty }^{\infty }\Phi (a+bx)^{2}\phi (x)\,dx=\Phi \left({\frac {a}{\sqrt {1+b^{2}}}}\right)-2T\left({\frac {a}{\sqrt {1+b^{2}}}},{\frac {1}{\sqrt {1+2b^{2}}}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b918ced8fecbcf973ed8046299626e270f006f32)
![{\displaystyle \int _{-\infty }^{\infty }x\Phi (a+bx)^{2}\phi (x)\,dx={\frac {2b}{\sqrt {1+b^{2}}}}\phi \left({\frac {a}{t}}\right)\Phi \left({\frac {a}{{\sqrt {1+b^{2}}}{\sqrt {1+2b^{2}}}}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/44be308dd18567fae66124257043562d163a13fa)
![{\displaystyle \int _{-\infty }^{\infty }\Phi (bx)^{2}\phi (x)\,dx={\frac {1}{\pi }}\arctan {\sqrt {1+2b^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/50992e95e18db66bbf4f3598358da4c3c14f7f91)
![{\displaystyle \int _{-\infty }^{\infty }x\phi (x)\Phi (bx)\,dx=\int _{-\infty }^{\infty }x\phi (x)\Phi (bx)^{2}\,dx={\frac {b}{\sqrt {2\pi (1+b^{2})}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6b6217e65de2ee35b2305c42cc713de0a5576077)
![{\displaystyle \int _{-\infty }^{\infty }\Phi (a+bx)\phi (x)\,dx=\Phi \left({\frac {a}{\sqrt {1+b^{2}}}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8e3418081486c781412e03c247e5474a9f2183e6)
![{\displaystyle \int _{-\infty }^{\infty }x\Phi (a+bx)\phi (x)\,dx={\frac {b}{t}}\phi \left({\frac {a}{t}}\right),\qquad t={\sqrt {1+b^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/72ddc9f9e5d3f6ccee4700897ee04382cd47219a)
![{\displaystyle \int _{0}^{\infty }x\Phi (a+bx)\phi (x)\,dx={\frac {b}{t}}\phi \left({\frac {a}{t}}\right)\Phi \left(-{\frac {ab}{t}}\right)+{\frac {1}{\sqrt {2\pi }}}\Phi (a),\qquad t={\sqrt {1+b^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4ccd89a4accf3f173cd848da3923bf3aba564032)
![{\displaystyle \int _{-\infty }^{\infty }\ln(x^{2}){\frac {1}{\sigma }}\phi \left({\frac {x}{\sigma }}\right)\,dx=\ln(\sigma ^{2})-\gamma -\ln 2\approx \ln(\sigma ^{2})-1.27036}](https://wikimedia.org/api/rest_v1/media/math/render/svg/235aece046d86ec3ba4e8f4194b7357c335150ab)
参考文献
- Owen, D. (1980年). “A table of normal integrals”. Communications in Statistics: Simulation and Computation B9: pp. 389 - 419
|