本項は三角関数を含む式の原始関数の一覧である。式に指数関数を含むものは指数関数の原始関数の一覧を、さらに完全な原始関数の一覧は、原始関数の一覧を参照のこと。三角積分も参照のこととする。
以下の全ての記述において、a は0でない、実数とする。また、C は積分定数とする。
三角関数の原始関数
![{\displaystyle \int \sin ax\;\mathrm {d} x=-{\frac {1}{a}}\cos \left(ax\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d585acf4f3c84a5abd2bc720a4de6db14303d20b)
![{\displaystyle \int \cos ax\;\mathrm {d} x={\frac {1}{a}}\sin ax+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e40c798753363ce2a72bb1490fecb64e620a4ccb)
![{\displaystyle \int \tan ax\;\mathrm {d} x=-{\frac {1}{a}}\ln \left|\cos \left(ax\right)\right|+C={\frac {1}{a}}\ln \left|\sec \left(ax\right)\right|+C\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8f1c71e1c9ed03e40263a7efe7b1a93066276433)
![{\displaystyle \int \cot ax\;\mathrm {d} x={\frac {1}{a}}\ln \left|\sin ax\right|+C\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6fa08bff769e64c80d070fd7b4e691e4d047867c)
:グーデルマン関数の逆関数
![{\displaystyle \int \csc {ax}\,\mathrm {d} x=-{\frac {1}{a}}\ln {\left|\csc {ax}+\cot {ax}\right|}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/854e3c6d64df6653d512ae2654d4435b45a3bcc8)
正弦関数のみを含む式の原始関数
![{\displaystyle \int \sin ax\;\mathrm {d} x=-{\frac {1}{a}}\cos ax+C\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c4485ed89b0b82dd17f28ca1369cc8dabc1cb9d1)
![{\displaystyle \int \sin ^{2}{ax}\;\mathrm {d} x={\frac {x}{2}}-{\frac {1}{4a}}\sin 2ax+C={\frac {x}{2}}-{\frac {1}{2a}}\sin ax\cos ax+C\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2c8e17b2f73633c06ae22b11dc458b9c6dcb0355)
![{\displaystyle \int \sin ^{3}{ax}\;\mathrm {d} x={\frac {\cos 3ax}{12a}}-{\frac {3\cos ax}{4a}}+C\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3acfffa52d730b2b3b978e4fdbb4cabfcb5e7e97)
![{\displaystyle \int x\sin ^{2}{ax}\;\mathrm {d} x={\frac {x^{2}}{4}}-{\frac {x}{4a}}\sin 2ax-{\frac {1}{8a^{2}}}\cos 2ax+C\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cf1f04085c8e96c7ba2d5fcee830965c7de4f52c)
![{\displaystyle \int x^{2}\sin ^{2}{ax}\;\mathrm {d} x={\frac {x^{3}}{6}}-\left({\frac {x^{2}}{4a}}-{\frac {1}{8a^{3}}}\right)\sin 2ax-{\frac {x}{4a^{2}}}\cos 2ax+C\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/92a6151657077977dc3d1bbd3d4285bc8a6492ea)
![{\displaystyle \int \sin b_{1}x\sin b_{2}x\;\mathrm {d} x={\frac {\sin((b_{1}-b_{2})x)}{2(b_{1}-b_{2})}}-{\frac {\sin((b_{1}+b_{2})x)}{2(b_{1}+b_{2})}}+C\qquad {\mbox{(}}|b_{1}|\neq |b_{2}|{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/42fe3a8ef8223bf29041108cee2b6dadf6da84e8)
![{\displaystyle \int \sin ^{n}{ax}\;\mathrm {d} x=-{\frac {\sin ^{n-1}ax\cos ax}{na}}+{\frac {n-1}{n}}\int \sin ^{n-2}ax\;\mathrm {d} x\qquad {\mbox{(}}n>2{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1b46bacded83b9e777d23d414ceb2a3c4744138b)
![{\displaystyle \int {\frac {\mathrm {d} x}{\sin ax}}={\frac {1}{a}}\ln \left|\tan {\frac {ax}{2}}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8dfc668c3e5bdfae0c1596a1d1eee4ea882e1c83)
![{\displaystyle \int {\frac {\mathrm {d} x}{\sin ^{n}ax}}={\frac {\cos ax}{a(1-n)\sin ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {\mathrm {d} x}{\sin ^{n-2}ax}}\qquad {\mbox{(}}n>1{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b786ca63a49c2ca10d7c5a8ab1517eaf28cbf1d8)
![{\displaystyle \int x\sin ax\;\mathrm {d} x={\frac {\sin ax}{a^{2}}}-{\frac {x\cos ax}{a}}+C\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dd5c9057354cb15bd57a832addb2fb976342b371)
![{\displaystyle \int x^{n}\sin ax\;\mathrm {d} x=-{\frac {x^{n}}{a}}\cos ax+{\frac {n}{a}}\int x^{n-1}\cos ax\;\mathrm {d} x=\sum _{k=0}^{2k\leq n}(-1)^{k+1}{\frac {x^{n-2k}}{a^{1+2k}}}{\frac {n!}{(n-2k)!}}\cos ax+\sum _{k=0}^{2k+1\leq n}(-1)^{k}{\frac {x^{n-1-2k}}{a^{2+2k}}}{\frac {n!}{(n-2k-1)!}}\sin ax\qquad {\mbox{(}}n>0{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/714c5e41342e2c3145ec42e912b4f2bf32bdb298)
![{\displaystyle \int _{\frac {-a}{2}}^{\frac {a}{2}}x^{2}\sin ^{2}{\frac {n\pi x}{a}}\;\mathrm {d} x={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}}}\qquad {\mbox{(}}n=2,4,6...{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/77b3f6c6bee9e73baa54ebf72b5ff032889ca309)
![{\displaystyle \int {\frac {\sin ax}{x}}\mathrm {d} x=\sum _{n=0}^{\infty }(-1)^{n}{\frac {(ax)^{2n+1}}{(2n+1)\cdot (2n+1)!}}+C\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/078855946f28ae28958ebc1d73382f97b2f82fc8)
![{\displaystyle \int {\frac {\sin ax}{x^{n}}}\mathrm {d} x=-{\frac {\sin ax}{(n-1)x^{n-1}}}+{\frac {a}{n-1}}\int {\frac {\cos ax}{x^{n-1}}}\mathrm {d} x\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8aff54d4b55d5dfad44f8ddfd261cc88cec0b3ef)
![{\displaystyle \int {\frac {\mathrm {d} x}{1\pm \sin ax}}={\frac {1}{a}}\tan \left({\frac {ax}{2}}\mp {\frac {\pi }{4}}\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7876a5e8bc9a7a2e1f9ef307e754c8c495a555be)
![{\displaystyle \int {\frac {x\;\mathrm {d} x}{1+\sin ax}}={\frac {x}{a}}\tan \left({\frac {ax}{2}}-{\frac {\pi }{4}}\right)+{\frac {2}{a^{2}}}\ln \left|\cos \left({\frac {ax}{2}}-{\frac {\pi }{4}}\right)\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6d0b0e7a53bd662f298d1a41107a9fd20980e1e4)
![{\displaystyle \int {\frac {x\;\mathrm {d} x}{1-\sin ax}}={\frac {x}{a}}\cot \left({\frac {\pi }{4}}-{\frac {ax}{2}}\right)+{\frac {2}{a^{2}}}\ln \left|\sin \left({\frac {\pi }{4}}-{\frac {ax}{2}}\right)\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1f8c4fce7c63c093a6181ffd15ac9925de7cb2ee)
![{\displaystyle \int {\frac {\sin ax\;\mathrm {d} x}{1\pm \sin ax}}=\pm x+{\frac {1}{a}}\tan \left({\frac {\pi }{4}}\mp {\frac {ax}{2}}\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/980ed886db7e23a0befad5c81965c38cb0135ca4)
余弦関数のみを含む式の原始関数
![{\displaystyle \int \cos ax\;\mathrm {d} x={\frac {1}{a}}\sin ax+C\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bf48148c2f2551f320d14b44087faade82eff3b8)
![{\displaystyle \int \cos ^{2}{ax}\;\mathrm {d} x={\frac {x}{2}}+{\frac {1}{4a}}\sin 2ax+C={\frac {x}{2}}+{\frac {1}{2a}}\sin ax\cos ax+C\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/22f3a549538075b161710d3de8ed8530a53e31d7)
![{\displaystyle \int \cos ^{n}ax\;\mathrm {d} x={\frac {\cos ^{n-1}ax\sin ax}{na}}+{\frac {n-1}{n}}\int \cos ^{n-2}ax\;\mathrm {d} x\qquad {\mbox{(}}n>0{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/42dddcf28e1a9016ff3f3e6e51c0527f5b928cfc)
![{\displaystyle \int x\cos ax\;\mathrm {d} x={\frac {\cos ax}{a^{2}}}+{\frac {x\sin ax}{a}}+C\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/de4f46e55c023e737c26af3d41639140d31f585f)
![{\displaystyle \int x^{2}\cos ^{2}{ax}\;\mathrm {d} x={\frac {x^{3}}{6}}+\left({\frac {x^{2}}{4a}}-{\frac {1}{8a^{3}}}\right)\sin 2ax+{\frac {x}{4a^{2}}}\cos 2ax+C\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/77e9a51f8c9a107ed7d2c954db63e8c8102a8dea)
![{\displaystyle \int x^{n}\cos ax\;\mathrm {d} x={\frac {x^{n}\sin ax}{a}}-{\frac {n}{a}}\int x^{n-1}\sin ax\;\mathrm {d} x\,=\sum _{k=0}^{2k+1\leq n}(-1)^{k}{\frac {x^{n-2k-1}}{a^{2+2k}}}{\frac {n!}{(n-2k-1)!}}\cos ax+\sum _{k=0}^{2k\leq n}(-1)^{k}{\frac {x^{n-2k}}{a^{1+2k}}}{\frac {n!}{(n-2k)!}}\sin ax\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f83f28bfabedbfc669233383f1cdf5348c759fbb)
![{\displaystyle \int {\frac {\cos ax}{x}}\mathrm {d} x=\ln |ax|+\sum _{k=1}^{\infty }(-1)^{k}{\frac {(ax)^{2k}}{2k\cdot (2k)!}}+C\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ef9927ebeaec09fab122d7891bafa8ef9aaff66f)
![{\displaystyle \int {\frac {\cos ax}{x^{n}}}\mathrm {d} x=-{\frac {\cos ax}{(n-1)x^{n-1}}}-{\frac {a}{n-1}}\int {\frac {\sin ax}{x^{n-1}}}\mathrm {d} x\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0c70cfa5aac0a4724fce45e956490c11a48959ca)
![{\displaystyle \int {\frac {\mathrm {d} x}{\cos ax}}={\frac {1}{a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C={\frac {1}{a}}\operatorname {gd} ^{-1}(ax)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6cf1124cc65d1bf774c81399abb5ca87a61bee34)
![{\displaystyle \int {\frac {\mathrm {d} x}{\cos ^{n}ax}}={\frac {\sin ax}{a(n-1)\cos ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {\mathrm {d} x}{\cos ^{n-2}ax}}\qquad {\mbox{(}}n>1{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/39215a7d59489ae949045a6d571cee4f86c9a7a9)
![{\displaystyle \int {\frac {\mathrm {d} x}{1+\cos ax}}={\frac {1}{a}}\tan {\frac {ax}{2}}+C\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2db02bf89ec890b6e841f68304d7e28a3edde51f)
![{\displaystyle \int {\frac {\mathrm {d} x}{1-\cos ax}}=-{\frac {1}{a}}\cot {\frac {ax}{2}}+C\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d8fe432bc622ac81bc65f4f115ff0756bbc743d4)
![{\displaystyle \int {\frac {x\;\mathrm {d} x}{1+\cos ax}}={\frac {x}{a}}\tan {\frac {ax}{2}}+{\frac {2}{a^{2}}}\ln \left|\cos {\frac {ax}{2}}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/affe021010cfe4ed02f1b174837899768ac93cca)
![{\displaystyle \int {\frac {x\;\mathrm {d} x}{1-\cos ax}}=-{\frac {x}{a}}\cot {\frac {ax}{2}}+{\frac {2}{a^{2}}}\ln \left|\sin {\frac {ax}{2}}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a20539258a72e739c7c6b7233c123087064cc610)
![{\displaystyle \int {\frac {\cos ax\;\mathrm {d} x}{1+\cos ax}}=x-{\frac {1}{a}}\tan {\frac {ax}{2}}+C\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/aeba7fad7f702e58fd2b72d5a0a8f71e2dd62c86)
![{\displaystyle \int {\frac {\cos ax\;\mathrm {d} x}{1-\cos ax}}=-x-{\frac {1}{a}}\cot {\frac {ax}{2}}+C\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/edfa05cb70dff2af793d724e554871a862f28b89)
![{\displaystyle \int \cos a_{1}x\cos a_{2}x\;\mathrm {d} x={\frac {\sin(a_{1}-a_{2})x}{2(a_{1}-a_{2})}}+{\frac {\sin(a_{1}+a_{2})x}{2(a_{1}+a_{2})}}+C\qquad {\mbox{(}}|a_{1}|\neq |a_{2}|{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c745256f6d670925cda1a37466067af4a838a122)
正接関数のみを含む式の原始関数
![{\displaystyle \int \tan ax\;\mathrm {d} x=-{\frac {1}{a}}\ln |\cos ax|+C={\frac {1}{a}}\ln |\sec ax|+C\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f219a2fbeefe1b98c9ef74e5797f1f245282cc3f)
![{\displaystyle \int \tan ^{n}ax\;\mathrm {d} x={\frac {1}{a(n-1)}}\tan ^{n-1}ax-\int \tan ^{n-2}ax\;\mathrm {d} x\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6ae75c8c7f704910181158ef9180ae44d92fce4e)
![{\displaystyle \int {\frac {\mathrm {d} x}{q\tan ax+p}}={\frac {1}{p^{2}+q^{2}}}(px+{\frac {q}{a}}\ln |q\sin ax+p\cos ax|)+C\qquad {\mbox{(}}p^{2}+q^{2}\neq 0{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a15851c3963fa9cf4fc0dc304422dc6ae5700a29)
![{\displaystyle \int {\frac {\mathrm {d} x}{\tan ax+1}}={\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax+\cos ax|+C\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/834122594f50a913368a245de0b32c3b817a5b70)
![{\displaystyle \int {\frac {\mathrm {d} x}{\tan ax-1}}=-{\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax-\cos ax|+C\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d30f450ce88c198f15660689748585ad51dd6f5b)
![{\displaystyle \int {\frac {\tan ax\;\mathrm {d} x}{\tan ax+1}}={\frac {x}{2}}-{\frac {1}{2a}}\ln |\sin ax+\cos ax|+C\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/687fc88c5eb1a3635735d6996b9ec534051311d9)
![{\displaystyle \int {\frac {\tan ax\;\mathrm {d} x}{\tan ax-1}}={\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax-\cos ax|+C\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/99fdf0e90369e96e5f7af0f71a0828aacef03c61)
正割関数のみを含む式の原始関数
![{\displaystyle \int \sec {ax}\,\mathrm {d} x={\frac {1}{a}}\ln {\left|\sec {ax}+\tan {ax}\right|}+C={\frac {1}{a}}\operatorname {gd} ^{-1}(ax)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/92200d4c27fb01fd13550af9eed399a06392df06)
![{\displaystyle \int \sec ^{2}{x}\,\mathrm {d} x=\tan {x}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ca63419cb8d63f84553f904b221eecbca813037f)
![{\displaystyle \int \sec ^{n}{ax}\,\mathrm {d} x={\frac {\sec ^{n-2}{ax}\tan {ax}}{a(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}{ax}\,\mathrm {d} x\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c72c7768fedcf3cc146483b810bfab2b8bf6e89b)
[1]
![{\displaystyle \int {\frac {\mathrm {d} x}{\sec {x}+1}}=x-\tan {\frac {x}{2}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f7bf13c8fd9c6fe5b56e33503d3c1aaeac4f3040)
![{\displaystyle \int {\frac {\mathrm {d} x}{\sec {x}-1}}=-x-\cot {\frac {x}{2}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/427fd5650227974d58761a8a1298237c9280cc01)
余割関数のみを含む式の原始関数
![{\displaystyle \int \csc {ax}\,\mathrm {d} x=-{\frac {1}{a}}\ln {\left|\csc {ax}+\cot {ax}\right|}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/854e3c6d64df6653d512ae2654d4435b45a3bcc8)
![{\displaystyle \int \csc ^{2}{x}\,\mathrm {d} x=-\cot {x}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a0217a0f47b8759f528ec432cb0876db88f34ad5)
![{\displaystyle \int \csc ^{n}{ax}\,\mathrm {d} x=-{\frac {\csc ^{n-1}{ax}\cos {ax}}{a(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \csc ^{n-2}{ax}\,\mathrm {d} x\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bd7a923ec406cdbdf8dae84cadf84667f85032d3)
![{\displaystyle \int {\frac {\mathrm {d} x}{\csc {x}+1}}=x-{\frac {2\sin {\frac {x}{2}}}{\cos {\frac {x}{2}}+\sin {\frac {x}{2}}}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4326e336ac8980749a9fd280fcfa17b7930d251d)
![{\displaystyle \int {\frac {\mathrm {d} x}{\csc {x}-1}}={\frac {2\sin {\frac {x}{2}}}{\cos {\frac {x}{2}}-\sin {\frac {x}{2}}}}-x+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/03c24b35ac9127c6344e76833e4c913e388c0b5e)
余接関数のみを含む式の原始関数
![{\displaystyle \int \cot ax\;\mathrm {d} x={\frac {1}{a}}\ln |\sin ax|+C\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/54449d79cb807b69a1d7e1dc0692fb2aea914199)
![{\displaystyle \int \cot ^{n}ax\;\mathrm {d} x=-{\frac {1}{a(n-1)}}\cot ^{n-1}ax-\int \cot ^{n-2}ax\;\mathrm {d} x\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/427cf9a775269bb2715d13a908c1f10e06df9572)
![{\displaystyle \int {\frac {\mathrm {d} x}{1+\cot ax}}=\int {\frac {\tan ax\;\mathrm {d} x}{\tan ax+1}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3f2b19a3daee6179aaa42651542fae13c161555c)
![{\displaystyle \int {\frac {\mathrm {d} x}{1-\cot ax}}=\int {\frac {\tan ax\;\mathrm {d} x}{\tan ax-1}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/948489d6f3978ce2b0bb416f93716260f64a04ee)
正弦関数と余弦関数を含む式の原始関数
![{\displaystyle \int {\frac {\mathrm {d} x}{\cos ax\pm \sin ax}}={\frac {1}{a{\sqrt {2}}}}\ln \left|\tan \left({\frac {ax}{2}}\pm {\frac {\pi }{8}}\right)\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/113beceea048ad32eb073ec40a49b01088b277c3)
![{\displaystyle \int {\frac {\mathrm {d} x}{(\cos ax\pm \sin ax)^{2}}}={\frac {1}{2a}}\tan \left(ax\mp {\frac {\pi }{4}}\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1d94b786c5a6b4af095c8072838869d61f196c53)
![{\displaystyle \int {\frac {\mathrm {d} x}{(\cos x+\sin x)^{n}}}={\frac {1}{n-1}}\left({\frac {\sin x-\cos x}{(\cos x+\sin x)^{n-1}}}-2(n-2)\int {\frac {\mathrm {d} x}{(\cos x+\sin x)^{n-2}}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/33f94702aa187930334c44bf5f828804e17bbf17)
![{\displaystyle \int {\frac {\cos ax\;\mathrm {d} x}{\cos ax+\sin ax}}={\frac {x}{2}}+{\frac {1}{2a}}\ln \left|\sin ax+\cos ax\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9ba779445bf35ae788e1bc3a75524a7402c45054)
![{\displaystyle \int {\frac {\cos ax\;\mathrm {d} x}{\cos ax-\sin ax}}={\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax-\cos ax\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ae173fa53f8e6e5bd063f39ce1a1b4693b065ce4)
![{\displaystyle \int {\frac {\sin ax\;\mathrm {d} x}{\cos ax+\sin ax}}={\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax+\cos ax\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d1c0aef659b13d42ce7748f9d53e8f2b8af1a2b0)
![{\displaystyle \int {\frac {\sin ax\;\mathrm {d} x}{\cos ax-\sin ax}}=-{\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax-\cos ax\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/896cb840f9947218e2ed07a7f4c49433b53d2d2e)
![{\displaystyle \int {\frac {\cos ax\;\mathrm {d} x}{\sin ax(1+\cos ax)}}=-{\frac {1}{4a}}\tan ^{2}{\frac {ax}{2}}+{\frac {1}{2a}}\ln \left|\tan {\frac {ax}{2}}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e5a372fd412bebe59f7a308148c14235e0771ad5)
![{\displaystyle \int {\frac {\cos ax\;\mathrm {d} x}{\sin ax(1-\cos ax)}}=-{\frac {1}{4a}}\cot ^{2}{\frac {ax}{2}}-{\frac {1}{2a}}\ln \left|\tan {\frac {ax}{2}}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ca0efe29351ecc571402fa61f7ce3247adb43a1b)
![{\displaystyle \int {\frac {\sin ax\;\mathrm {d} x}{\cos ax(1+\sin ax)}}={\frac {1}{4a}}\cot ^{2}\left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)+{\frac {1}{2a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/39972034bd7df5d4da8216c59dec6990ee43bdfd)
![{\displaystyle \int {\frac {\sin ax\;\mathrm {d} x}{\cos ax(1-\sin ax)}}={\frac {1}{4a}}\tan ^{2}\left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)-{\frac {1}{2a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/67d77825e42eaf3f8c1d51418f9b0b8f10205024)
![{\displaystyle \int \sin ax\cos ax\;\mathrm {d} x=-{\frac {1}{2a}}\cos ^{2}ax+C\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d2642e16a0d3978d32b4b1fbbd7d7a9f098b7a5e)
![{\displaystyle \int \sin a_{1}x\cos a_{2}x\;\mathrm {d} x=-{\frac {\cos((a_{1}-a_{2})x)}{2(a_{1}-a_{2})}}-{\frac {\cos((a_{1}+a_{2})x)}{2(a_{1}+a_{2})}}+C\qquad {\mbox{(}}|a_{1}|\neq |a_{2}|{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1d9a741a3a846d2623140a772487f8ba32ece835)
![{\displaystyle \int \sin ^{n}ax\cos ax\;\mathrm {d} x={\frac {1}{a(n+1)}}\sin ^{n+1}ax+C\qquad {\mbox{(}}n\neq -1{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/987498cc4adb6e377b2504fb76e547ac1d54876c)
![{\displaystyle \int \sin ax\cos ^{n}ax\;\mathrm {d} x=-{\frac {1}{a(n+1)}}\cos ^{n+1}ax+C\qquad {\mbox{(}}n\neq -1{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0b1c160f04a7c2427a90e942969f8db1ffa3e434)
![{\displaystyle \int \sin ^{n}ax\cos ^{m}ax\;\mathrm {d} x=-{\frac {\sin ^{n-1}ax\cos ^{m+1}ax}{a(n+m)}}+{\frac {n-1}{n+m}}\int \sin ^{n-2}ax\cos ^{m}ax\;\mathrm {d} x\qquad {\mbox{(}}m,n>0{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/004171552d34618a9b010ac593a3f85ce925ae28)
- または
![{\displaystyle \int \sin ^{n}ax\cos ^{m}ax\;\mathrm {d} x={\frac {\sin ^{n+1}ax\cos ^{m-1}ax}{a(n+m)}}+{\frac {m-1}{n+m}}\int \sin ^{n}ax\cos ^{m-2}ax\;\mathrm {d} x\qquad {\mbox{(}}m,n>0{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/87fd799ebd11e2bc530e136fa978b3a827c65fef)
![{\displaystyle \int {\frac {\mathrm {d} x}{\sin ax\cos ax}}={\frac {1}{a}}\ln \left|\tan ax\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9d851b3f674c81d37c02b96b1cb02c3e679feab3)
![{\displaystyle \int {\frac {\mathrm {d} x}{\sin ax\cos ^{n}ax}}={\frac {1}{a(n-1)\cos ^{n-1}ax}}+\int {\frac {\mathrm {d} x}{\sin ax\cos ^{n-2}ax}}\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/44e449d9dacc006b76db895c610c9d6576ccf01d)
![{\displaystyle \int {\frac {\mathrm {d} x}{\sin ^{n}ax\cos ax}}=-{\frac {1}{a(n-1)\sin ^{n-1}ax}}+\int {\frac {\mathrm {d} x}{\sin ^{n-2}ax\cos ax}}\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6463d54a304a0a0d00a9f8795a44a79e984f5f8d)
![{\displaystyle \int {\frac {\sin ax\;\mathrm {d} x}{\cos ^{n}ax}}={\frac {1}{a(n-1)\cos ^{n-1}ax}}+C\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e5d1ed13420e2f8a62aa901a3b70caeff8e7eb3f)
![{\displaystyle \int {\frac {\sin ^{2}ax\;\mathrm {d} x}{\cos ax}}=-{\frac {1}{a}}\sin ax+{\frac {1}{a}}\ln \left|\tan \left({\frac {\pi }{4}}+{\frac {ax}{2}}\right)\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f8d6cf7a626245e5b525924441bc9bc095309a37)
![{\displaystyle \int {\frac {\sin ^{2}ax\;\mathrm {d} x}{\cos ^{n}ax}}={\frac {\sin ax}{a(n-1)\cos ^{n-1}ax}}-{\frac {1}{n-1}}\int {\frac {\mathrm {d} x}{\cos ^{n-2}ax}}\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0a5c5ca83f71ad68892b4c1fed0b588c327ac033)
![{\displaystyle \int {\frac {\sin ^{n}ax\;\mathrm {d} x}{\cos ax}}=-{\frac {\sin ^{n-1}ax}{a(n-1)}}+\int {\frac {\sin ^{n-2}ax\;\mathrm {d} x}{\cos ax}}\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/28dc28ce332c6888855fb91d0b2b747ff88b3447)
![{\displaystyle \int {\frac {\sin ^{n}ax\;\mathrm {d} x}{\cos ^{m}ax}}={\frac {\sin ^{n+1}ax}{a(m-1)\cos ^{m-1}ax}}-{\frac {n-m+2}{m-1}}\int {\frac {\sin ^{n}ax\;\mathrm {d} x}{\cos ^{m-2}ax}}\qquad {\mbox{(}}m\neq 1{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b3022eefb0220b1c147ac7f7335634be29576fe4)
- または
![{\displaystyle \int {\frac {\sin ^{n}ax\;\mathrm {d} x}{\cos ^{m}ax}}=-{\frac {\sin ^{n-1}ax}{a(n-m)\cos ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\sin ^{n-2}ax\;\mathrm {d} x}{\cos ^{m}ax}}\qquad {\mbox{(}}m\neq n{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e853db655f2489735d4ae036d7a6b6008fcacee9)
- または
![{\displaystyle \int {\frac {\sin ^{n}ax\;\mathrm {d} x}{\cos ^{m}ax}}={\frac {\sin ^{n-1}ax}{a(m-1)\cos ^{m-1}ax}}-{\frac {n-1}{m-1}}\int {\frac {\sin ^{n-2}ax\;\mathrm {d} x}{\cos ^{m-2}ax}}\qquad {\mbox{(}}m\neq 1{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6e78df1dcd1d93554b9b84dbaea0e45c7c466da0)
![{\displaystyle \int {\frac {\cos ax\;\mathrm {d} x}{\sin ^{n}ax}}=-{\frac {1}{a(n-1)\sin ^{n-1}ax}}+C\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/336610295fcfc5b373ea6c014718c931ef883d6a)
![{\displaystyle \int {\frac {\cos ^{2}ax\;\mathrm {d} x}{\sin ax}}={\frac {1}{a}}\left(\cos ax+\ln \left|\tan {\frac {ax}{2}}\right|\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7ec01cb9859e14793e0ff78b9c215826d8255d5e)
![{\displaystyle \int {\frac {\cos ^{2}ax\;\mathrm {d} x}{\sin ^{n}ax}}=-{\frac {1}{n-1}}\left({\frac {\cos ax}{a\sin ^{n-1}ax)}}+\int {\frac {\mathrm {d} x}{\sin ^{n-2}ax}}\right)\qquad {\mbox{(}}n\neq 1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1161534adb8bf5668aa6d97318a077d9ac53d832)
![{\displaystyle \int {\frac {\cos ^{n}ax\;\mathrm {d} x}{\sin ^{m}ax}}=-{\frac {\cos ^{n+1}ax}{a(m-1)\sin ^{m-1}ax}}-{\frac {n-m-2}{m-1}}\int {\frac {\cos ^{n}ax\;\mathrm {d} x}{\sin ^{m-2}ax}}\qquad {\mbox{(}}m\neq 1{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/52d4d721b5e498b07443ec5027f436c964ac437f)
- または
![{\displaystyle \int {\frac {\cos ^{n}ax\;\mathrm {d} x}{\sin ^{m}ax}}={\frac {\cos ^{n-1}ax}{a(n-m)\sin ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\cos ^{n-2}ax\;\mathrm {d} x}{\sin ^{m}ax}}\qquad {\mbox{(}}m\neq n{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/90dd815a75225362aa97e2273dbd4c5be085793b)
- または
![{\displaystyle \int {\frac {\cos ^{n}ax\;\mathrm {d} x}{\sin ^{m}ax}}=-{\frac {\cos ^{n-1}ax}{a(m-1)\sin ^{m-1}ax}}-{\frac {n-1}{m-1}}\int {\frac {\cos ^{n-2}ax\;\mathrm {d} x}{\sin ^{m-2}ax}}\qquad {\mbox{(}}m\neq 1{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ecd8af0794ebdcf192b80a7334f945d8b5ddb347)
正弦関数と正接関数を含む式の原始関数
![{\displaystyle \int \sin ax\tan ax\;\mathrm {d} x={\frac {1}{a}}(\ln |\sec ax+\tan ax|-\sin ax)+C\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cc722392a76d9c89bad4f9862e8eeea2872a2c4a)
![{\displaystyle \int {\frac {\tan ^{n}ax\;\mathrm {d} x}{\sin ^{2}ax}}={\frac {1}{a(n-1)}}\tan ^{n-1}(ax)+C\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4d1385774d157379b586bb1fc00a1f803e0ed022)
余弦関数と正接関数を含む式の原始関数
![{\displaystyle \int {\frac {\tan ^{n}ax\;\mathrm {d} x}{\cos ^{2}ax}}={\frac {1}{a(n+1)}}\tan ^{n+1}ax+C\qquad {\mbox{(}}n\neq -1{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6e89630f4ae83a5c096853a0f54a3e74c658dfca)
正弦関数と余接関数を含む式の原始関数
![{\displaystyle \int {\frac {\cot ^{n}ax\;\mathrm {d} x}{\sin ^{2}ax}}=-{\frac {1}{a(n+1)}}\cot ^{n+1}ax+C\qquad {\mbox{(}}n\neq -1{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b5b2fb2bad31ad716579d19ec60e5b556bcff025)
余弦関数と余接関数を含む式の原始関数
![{\displaystyle \int {\frac {\cot ^{n}ax\;\mathrm {d} x}{\cos ^{2}ax}}={\frac {1}{a(1-n)}}\tan ^{1-n}ax+C\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/78e34167bff5cb4ada3bc54896d585a0c1ac1dd8)
対称性を利用した定積分の計算
![{\displaystyle \int _{-c}^{c}\sin {x}\;\mathrm {d} x=0\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/15eb77904de9735a630976e29fe6df1e42775b48)
![{\displaystyle \int _{-c}^{c}\cos {x}\;\mathrm {d} x=2\int _{0}^{c}\cos {x}\;\mathrm {d} x=2\int _{-c}^{0}\cos {x}\;\mathrm {d} x=2\sin {c}\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b47bb5a2390b43983fdf6f1a76400a45f1ac713c)
![{\displaystyle \int _{-c}^{c}\tan {x}\;\mathrm {d} x=0\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5926e6c1b89f86e39548221b89fad9e565f094b3)
![{\displaystyle \int _{-{\frac {a}{2}}}^{\frac {a}{2}}x^{2}\cos ^{2}{\frac {n\pi x}{a}}\;\mathrm {d} x={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}}}\qquad {\mbox{(}}n=1,3,5...{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2d923c17067831b8900a538b6a4e7b9c391dbacb)
参照
- ^ Stewart, James. Calculus: Early Transcendentals, 6th Edition. Thomson: 2008
関連項目
|