片側極限
数学の微分積分学における片側極限(かたがわきょくげん、英: one-sided limit)とは、実変数関数 f(x) の x が、ある点に上側あるいは下側から近付くときに得られる二つの極限のいずれかのことを言う。x が a に減少する形で近付く(x が a に「右から」あるいは「上から」近付く)時の極限は などと書く。同様に、x が a に増加する形で近付く(x が a に「左から」あるいは「下から」近付く)時の極限は などと書く。 f(x) の x が a に近付く時の通常の意味での極限が存在するなら、二つの片側極限は存在し、それらは一致する。極限 が存在しなくても、二つの片側極限が存在する場合もある。そのため、x が a に近付く時の極限を両側極限と呼ぶこともある。片側極限の一方は存在するがもう一方は存在しない場合や、いずれの片側極限も存在しない場合もあり得る。 右側極限は、次のように厳密に定義することが出来る: 同様に、左側極限は次のように厳密に定義することが出来る:
例片側極限がそれぞれ異なるような関数の例として、次が挙げられる: であるが、 となり、二つの片側極限は一致しない。 位相空間論的な極限の定義との関係ある点 p への片側極限は、関数の定義域が位相空間の部分集合であることを許すか、あるいは p を含む片側部分空間を考えることによって、その定義域が片側に制限されたときの、極限の一般的な定義に対応する。 アーベルの定理ある冪級数の、収束区間の境界における片側極限を扱った注目すべき定理に、アーベルの定理がある。 関連項目外部リンク |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia