The orexin receptor (also referred to as the hypocretin receptor) is a G-protein-coupled receptor that binds the neuropeptide orexin. There are two variants, OX1 and OX2, each encoded by a different gene (HCRTR1, HCRTR2).[1]
Both orexin receptors exhibit a similar pharmacology – the 2 orexin peptides, orexin-A and orexin-B, bind to both receptors and, in each case, agonistbinding results in an increase in intracellularcalcium levels. However, orexin-B shows a 5- to 10-fold selectivity for orexin receptor type 2, whilst orexin-A is equipotent at both receptors.[2][3]
Several orexin receptor antagonists are in development for potential use in sleep disorders.[4] The first of these, suvorexant, has been on the market in the United States since 2015.[5] There were two orexin agonists under development as of 2019[update].[6]
Ligands
Several drugs[7] acting on the orexin system are under development, either orexin agonists for the treatment of conditions such as narcolepsy, or orexin antagonists for insomnia. In August 2015, Nagahara et al. published their work in synthesizing the first HCRT/OX2R agonist, compound 26, with good potency and selectivity.[8]
No neuropeptide agonists are yet available, although synthetic orexin-A polypeptide has been made available as a nasal spray and tested on monkeys. One non-peptide antagonist is currently available in the U.S., Merck'ssuvorexant (Belsomra),[9] two additional agents are in development: SB-649,868 byGlaxoSmithKline, for sleep disorders, and ACT-462206, currently in human clinical trials.[10] Another drug in development, almorexant (ACT-078573) by Actelion, was abandoned due to adverse effects. Lemborexant, an orexin receptor antagonist, was approved for use in the United States in 2019.
Most ligands acting on the orexin system so far are polypeptides modified from the endogenous agonists orexin-A and orexin-B, however there are some subtype-selective non-peptide antagonists available for research purposes.
^Heifetz A, Morris GB, Biggin PC, Barker O, Fryatt T, Bentley J, et al. (April 2012). "Study of human Orexin-1 and -2 G-protein-coupled receptors with novel and published antagonists by modeling, molecular dynamics simulations, and site-directed mutagenesis". Biochemistry. 51 (15): 3178–3197. doi:10.1021/bi300136h. PMID22448975. S2CID42765328.
^Baxter CA, Cleator ED, Karel MJ, Edwards JS, Reamer RA, Sheen FJ, et al. (2011). "The First Large-Scale Synthesis of MK-4305: A Dual Orexin Receptor Antagonist for the Treatment of Sleep Disorder". Organic Process Research & Development. 15 (2): 367–375. doi:10.1021/op1002853.
^Hoch M, van Gorsel H, van Gerven J, Dingemanse J (September 2014). "Entry-into-humans study with ACT-462206, a novel dual orexin receptor antagonist, comparing its pharmacodynamics with almorexant". Journal of Clinical Pharmacology. 54 (9): 979–986. doi:10.1002/jcph.297. PMID24691844. S2CID40714628.
^"AEX 5". AdisInsight. Springer Nature Switzerland AG. 12 March 2024. Retrieved 31 July 2024.
^"AEX 19". AdisInsight. Springer Nature Switzerland AG. 22 March 2024. Retrieved 31 July 2024.
^ abWO application 2019027058, Kajita Y, Mikami SM Miyanohana Y, Koike T, Daini M, Oyabu N, Ogino M, Takeuchi K, Ito Y, Tokunaga N, Sugimoto T, Miyazaki T, Oda T, Hoashi Y, Hattori Y, Imamura K, "Heterocyclic compound and use therof", published 2019-02-07, assigned to Takeda Pharmaceutical Company