مُتَسَلْسِلَةُ تَايْلُور[عر 1][عر 2] أو مُتَسَلْسِلَةُ تَيْلُور[عر 3] أو سِلْسِلَةُ تَايْلُور[عر 4] (بالإنجليزية: Taylor series) أو مَفْكُوكُ تَايْلُور[عر 5] أو نَشْرُ تَايْلُور[عر 6] (بالإنجليزية: Taylor expansion) لدالة ما هي مجموع غير منتهٍ من الحدود التي يُعبَّر عنها بدلالة مشتقات الدالة في نقطة محددة. تكون معظم الدوال الشائعة ومجموع متسلسلة تايلور الخاصة بها متساويتين بالقرب من هذه النقطة. سميت سلسلة تايلور على اسم العالم الإنجليزي بروك تايلور، الذي أدخلها في عام 1715. وتسمى متسلسلة تايلور أيضًا متسلسلة ماكلورين عندما تكون المشتقات عند النقطة 0، تيمنًا بالعالم الإسكتلندي كولين ماكلورين، الذي استخدم هذه الحالة الخاصة من متسلسلة تايلور على نطاق واسع في منتصف القرن الثامن عشر.
المجموع الجزئي المكون من حدود n + 1 الأولى لمتسلسلة تايلور هو كثير الحدود من الدرجة n يسمى كثير حدود تايلور للدالة من الدرجة n. تعد معادلات تايلور كثيرة الحدود تقديرات تقريبية لدالة ما، والتي تصبح أكثر دقة عمومًا عندما تتزايد n. تعطي مبرهنة تايلور تقديرات كمية للخطأ الناتج عن استخدام مثل هذه التقديرات التقريبية. إذا كانت متسلسلة تايلور للدالة متقاربة، فإن مجموعها هي نهاية المتتالية اللانهائية لكثير الحدود لتايلور. قد تختلف الدالة عن مجموع متسلسلة تايلور الخاصة بها، حتى لو كانت متسلسلة تايلور متقاربة. تكون الدالة تحليلية عند نقطة x إذا كانت مساوية لمجموع متسلسلة تايلور الخاصة بها في فترة مفتوحة (أو قرص مفتوح في المستوي المركب) تحوي x. هذا يعني أن الدالة تحليلية في كل نقطة من الفترة (أو القرص).
المفكوك أعلاه مستمر لأن مشتق ex بالنسبة لـ x هو نفسه ex، وe0 تساوي 1. يجعل هذا الحدود (x − 0)n في البسط وn! في المقام لأي حد في المتسلسلة اللانهائية.
التاريخ
نظر الفيلسوف الإغريقيزينون الإيلي في مسألة جمع متسلسلة لانهائية لتحقيق نتيجة منتهية، لكنهُ رفضها لأنها مستحيلة؛[2] وكانت النتيجة مفارقة زينون. اقترح أرسطو في وقت لاحق حلاً فلسفيًا للمفارقة، ولكن يبدو أن الجانب الرياضي لم يُحل حتى عالجه أرخميدس. عالج الفيلسوف ديمقريطس، صاحب المبدأ الذري، في ما سبق هذه المسألة، وكان من المتقدمين الذين عاشوا قبل أرسطو. كانت من خلال طريقة استنفاد أرخميدس أنه يمكن إجراء عدد لانهائي من الأقسام الفرعية المستمرة لتحقيق نتيجة منتهية.[3] استخدم الرياضياتي الصينيليو هوي بشكل مستقل طريقة مماثلة بعد بضعة قرون.[4]
عرض جيمس غريغوري في رسالته إلى جون كولينز في أواخر عام 1670م، العديد من متسلسلات ماكلورين (sin x، وcos x، وarcsin x، وx cot x) المشتقة من قبل إسحاق نيوتن، وأخبر أن نيوتن قد طور طريقة عامة لنشر الدوال في شكل متسلسلات. في الواقع، استخدم نيوتن طريقة مرهقة تنطوي على تقسيم طويل للمتسلسلة والتكامل حدًّا تلو الآخر، لكن غريغوري لم يكن يعرف ذلك وشرع في اكتشاف طريقة عامة لنفسه. في أوائل عام 1671، اكتشف غريغوري شيئًا مثل متسلسلة ماكلورين العامة وأرسل رسالة إلى كولينز تتضمن المتسلسلات الخاصة بـ (قوس الظل)، و (ظل الزاوية)، و (قاطع الزاوية)، و (اللوغاريتم الطبيعي لقاطع x، وهو تكامل دالة الظل)، و (تكامل دالة القاطع[الإنجليزية]، وهي الدالة العكسية للدالة الغودرمانية)، و (قوس قاطعالجذر التربيعي للعدد 2 مضروب في الدالة الأسية)، و (الدالة الغودرمانية). ومع ذلك، معتقدًا أنه قد أعاد تطوير طريقة نيوتن، لم يصف غريغوري أبدًا كيف حصل على هذه المتسلسلة، ولا يمكن الاستدلال إلا على أنه فهم الطريقة العامة من خلال فحص الأعمال الأولى التي كتبها على الوجه الخلفي من رسالة أخرى أُرخت سنة 1671م.[6]
كتب إسحاق نيوتن بين عامي 1691 و1692م، بيانًا صريحًا لمتسلسلات تايلور وماكلورين في نسخة غير منشورة من عملهِ (باللاتينية: De Quadratura Curvarum) (تعني حرفيًّا "عن تربيع المنحنيات"). لكن هذا العمل لم يكتمل أبداً وحذفت الأقسام ذات الصلة من الأجزاء المنشورة عام 1704م، تحت عنوان (باللاتينية: Tractatus de Quadratura Curvarum) (تعني حرفيًّا "رسالة تربيع المنحنيات").[fr 1]
لم تُنشر طريقة عامة لتوليد هذه المتسلسلة لجميع الدوال التي وضع بروك تايلور متسلسلاتها حتى عام 1715م،[7] وسُميت المتسلسلة بعد ذلك باسم هذا العالم.
إذا عُبِّر عن f (x) باستعمال متسلسلة قوى متقاربة في قرص مفتوح متمركز عند b في المستوي المركب (أو فترة في مستقيم الأعداد الحقيقية)، يُقال عنها أنها تحليلية في هذه المنطقة. وبالتالي، بالنسبة إلى x في هذه المنطقة، تُعطى f بمتسلسلة قوى متقاربة التالية:[9]
بالاشتقاق بالنسبة لـ x للصيغة أعلاه n مرات، ثم وضع x = b، نحصل على:
برهان
تكتب متسلسلة القوى على هذا الشكل:
لما ، تصبح
نشتق الدالة المعطاة، تصبح:
عند تعويض المتسلسلة الأخيرة بـ b، نحصل على:
ثم نشتق الدالة المشتقة، تصبح:
عند تعويض المشتقة من الدرجة الثانية بـ b، نحصل على
إذن،
تُستنتج دالة تايلور بتكرار العملية نفسها وبتعويض معاملات الخاصة بالدالة الأخيرة بـ (حيث n عدد طبيعي) الموافقة لها.
تتوافق متسلسلة القوى مع متسلسلة تايلور. أي أن الدالة تكون تحليلية في قرص مفتوح متمركز عند b إذا وفقط إذا كانت متسلسلة تايلور الخاصة بها تتقارب نحو قيمة الدالة عند كل نقطة من القرص.
إذا كانت f (x) مساوية لمجموع متسلسلة تايلور الخاصة بها من أجل كل x في المستوي المركب، فإنها تسمى دالة صحيحة. تعد كثيرات الحدود، والدالة الأسيةex، ودالتا الجيبوجيب التمامالمثلثيتان، أمثلةً على الدوال الصحيحة. تتضمن أمثلة الدوال غير الصحيحة الجذر التربيعي، واللوغاريتم، والدالة المثلثية الظل ودالتها العكسية قوس الظل. بالنسبة لهذه الدوال، لا تتقارب متسلسلة تايلور إذا كانت x بعيدة عن b.[عر 7][10] أي أن متسلسلة تايلور تتباعد عند x إذا كانت المسافة بين x وb أكبر من نصف قطر التقارب.[10] يمكن استخدام متسلسلة تايلور لحساب قيمة دالة صحيحة في كل نقطة، إذا كانت قيمة الدالة وجميع مشتقاتها معلومة عند نقطة واحدة. تشمل استخدامات متسلسلة تايلور للدوال التحليلية ما يلي:
يمكن استخدام المجاميع الجزئية (كثيرات الحدود لتايلور) للمتسلسلة تقريبًا للدالة. هذه التقريبات جيدة إذا ضُمِّنت عدد كافٍ من الحدود.
يمكن إجراء تفاضل وتكامل متسلسلات القوى حدًّا تلو الآخر، وبالتالي فهي سهلة بشكل خاص.[11]
يمكن إجراء العمليات الجبرية بسهولة على تمثيل متسلسلة القوى؛ على سبيل المثال، تُسْتَنْتَج صيغة أويلر من مفكوكات تايلور للدوال المثلثية والأسية.[15] هذه النتيجة ذات أهمية أساسية في مجالات مثل التحليل التوافقي.
يمكن للتقريب باستخدام الحدود القليلة الأولى من متسلسلة تايلور أن يجعل للمسائل غير القابلة للحل يمكن حلها في مجال مقصّر؛ غالبًا ما يستخدم هذا التقريب في الفيزياء.
توضح الصورة المقابلة تقريب دقيق لدالة الجيب حول النقطة x = 0. المنحنى الوردي هو كثير الحدود من الدرجة السابعة:
الخطأ في هذا التقريب لا يزيد عن |x|9 / 9!. لدورة كاملة متمركزة في نقطة الأصل (−π < x < π)، يكون الخطأ أقل من 0.08215. بشكل خاص، بالنسبة لـ −1 < x < 1، يكون الخطأ أقل من 0.000003.
في المقابل، تظهر أيضًا صورة لدالة اللوغاريتم الطبيعي ln(1 + x) وبعض كثيرات الحدود لتايلور حول a = 0. تتقارب هذه التقريبات نحو الدالة فقط في المنطقة −1 < x ≤ 1؛ خارج هذه المنطقة، تعد كثيرات حدود لتايلور ذات الدرجة الأعلى تقريبات سيئة للدالة.
يُطلق على الخطأ الذي حصل في تقريب دالة بكثير الحدود لتايلور من الدرجة n اسم "الباقي" ويُشار إليه بالدالة Rn(x). يمكن استخدام مبرهنة تايلور للحصول على تقييد لحجم الباقي.[16]
متسلسلة تايلور ليست متقاربة على الإطلاق. إن مجموعة الدوال المُعرَّفة بمتسلسلات تايلور المتقاربة هي في الواقع مجموعة هزيلة في فضاء فريشيهللدوال الملساء.[17] وحتى إذا تقاربت متسلسلة تايلور للدالة f، فلا يلزم أن تكون نهايتها مساوية لقيمة الدالة f (x). فعلى سبيل المثال، الدالة التالية:
هي دالة قابلة للاشتقاق لانهائيَّا عند x = 0، وله جميع المشتقات تساوي الصفر. وبالتالي، فإن متسلسلة تايلور الخاصة بـ f (x) عند x = 0 تساوي صفرًا بشكل مطابق. ومع ذلك، فإن f (x) ليست دالة صفرية، لذلك لا تساوي متسلسلة تايلور الخاصة بها عند نقطة الأصل. وبالتالي، فإن f (x) هي مثال على دوال ملساء غير تحليلية.
يُظهر مثال في التحليل الحقيقي هذا وجود دوال قابلة للتفاضل لانهائيّاf (x) متسلسلة تايلور الخاصة بها لا تساوي f (x) حتى لو كانت متقاربة. على النقيض من ذلك، فإن الدوال التامة التشكل التي دُرِست في التحليل المركب تمتلك دائمًا متسلسلة تايلور متقاربة، وحتى متسلسلة تايلور للدوال الجزئية التشكل، والتي قد يكون لها نقاط شاذة، لا تتقارب أبدًا مع قيمة مختلفة عن الدالة نفسها. ومع ذلك، فإن الدالة المركبة e−1/z2 لا تقترب من 0 عندما تقترب z من 0 على طول المحور التخيلي، لذلك فهي ليست مستمرة في المستوي المركب ومتسلسلة تايلور الخاصة بها غير معرفة عند 0.
يمكن أن تظهر كل متتالية الأعداد الحقيقية أو المركبة معاملاتٍ في سلسلة تايلور لدالة قابلة للتفاضل لانهائيًّا معرفة على المستقيم الحقيقي، نتيجة لتوطئة بوريل. نتيجة لذلك، يمكن أن يكون نصف قطر تقارب متسلسلة تايلور يساوي الصفر. حتى أن هناك دوال قابلة للتفاضل لانهائيًا معرفة على المستقيم الحقيقي التي متسلسلات تايلور الخاصة بالدوال لها نصف قطر تقارب يساوي 0 في كل مكان.[18]
لا يمكن كتابة الدالة على شكل متسلسلة تايلور تتمركز على النقطة الشاذة؛ في هذه الحالات، يمكننا في كثير من الأحيان تحقيق متسلسلة إذا سمحنا أيضًا القوى السالبة للمتغير x؛ طالع متسلسلة لوران. على سبيل المثال، يمكن كتابة f (x) = e−1/x2 على شكل متسلسلة لوران.[19]
التعميم
يوجد تعميم لمتسلسلة تايلور يتقارب مع قيمة الدالة نفسها إذا كانت مستمرة محدودة في المجال (0,∞)، يمكن حسابه باستخدام حساب الفروق المحدودة.[20][21] وفقاً للمبرهنة التالية، التي وضعها إينار هيل، من أجل t > 0:
هنا Δn h هو مؤثر الفرق المنتهي من الرتبة n ذو حجم الخطوة h. المتسلسلة هي بالضبط متسلسلة تايلور، باستثناء أن الفروق المقسَّمة تظهر بدلاً من التفاضل. عندما تكون الدالة f تحليلية عند a، فإن الحدود في المتسلسلة تتقارب نحو حدود متسلسلة تايلور، وبهذا المعنى تعمم متسلسلة تايلور المألوفة.
دالة اللوغاريتم الطبيعي (للأساس e) لها متسلسلة ماكلورين التالية:[24]
تتقارب تلك المتسلسلات من أجل . (بالإضافة إلى ذلك، المتسلسلة الخاصة بـ ln(1 − x) تتقارب من أجل x = −1، والمتسلسلة الخاصة بـ ln(1 + x) تتقارب من أجل x = 1.)
معاملاتها هي معاملات ثنائي الحد المعممة:[27] (إذا كان n = 0، هذا الجداء هو جداء خالٍ وله قيمة 1.) كلها تتقارب من أجل من أجل كل عدد حقيقي أو مركب α.
لما α = −1، فهذه هي في الأساس المتسلسلة الهندسية اللانهائية المذكورة في القسم السابق. تعطي الحالات الخاصة α = 1/2 و α = −1/2 دالة الجذر التربيعيومقلوبها:[25]عندما يُحتفظ بالحد الخطي فقط، فإن هذا يبسط تقريب ثنائي الحد.
توجد طرائق عديدة لحساب متسلسلة تايلور لعدد كبير من الدوال. يمكن محاولة استخدام تعريف متسلسلة تايلور، مع أن هذا يتطلب غالبًا تعميم شكل المعامِلات وفقًا لنمط واضح بسهولة. بدلاً من ذلك، يمكن استخدام العمليات مثل التعويض أو الضرب أو القسمة أو الجمع أو الطرح لمتسلسلة تايلور القياسية لإنشاء متسلسلة تايلور لدالة، بحكم أن متسلسلة تايلور هي متسلسلة قوى.[33] في بعض الحالات، يمكن أيضًا اشتقاق متسلسلة تايلور من خلال تطبيق مكاملة بالتجزئة بشكل متكرر. من الملائم بشكل خاص استخدام أنظمة الجبر الحاسوبية لحساب متسلسلة تايلور.
المثال الأول
المطلوب حساب كثير الحدود لماكلورين من الدرجة السابعة للدالة التالية:
للمتسلسلة الأخيرة حد ثابت مساوٍ للصفر، أي يمكن تعويض المتسلسلة الثانية في الأولى وإزالة الحدود ذات الدرجة الأعلى من الدرجة السابعة بسهولة باستخدام تدوين O الكبير:
لأن جيب التمام دالة زوجية، بلزم أن تكون معاملات القوى الفردية كلها، أي x، x3، x5، x7، ... مساوية للصفر.
المثال الثاني
المطلوب إيجاد متسلسلة تايلور عند النقطة 0 للدالة:
بالنسبة للدالة الأسية:
وكما في المثال الأول:
متسلسلة القوى، افتراضاً، هي:
يكون الناتج عندئذ، بعد ضرب المقام وبتعويض سلسلة جيب التمام:
بجمع الحدود حتى الحد ذي الدرجة الرابعة:
يمكن إيجاد قيم من خلال مطابقة المعاملات مع متسلسلة ، وينتج عنها:
المثال الثالث
ستُستخدم طريقة تسمى "النشر غير المباشر"، أو "الفك غير المباشر"، لنشر الدالة المعطاة. تُستخدم هذه الطريقة نشر تايلور المعروفة للدالة الأسية. من أجل نشر (1 + x)ex على سبيل المثال على شكل متسلسلة تايلور بدلالة x، نستخدم متسلسلة تايلور المعروفة لدالة ex على سبيل المثال:
وبالتالي،
متسلسلات تايلور تعريفاتٍ
تُعَرَّف الدوال الجبرية بمعادلة جبرية، وتُعَرَّف الدوال المتسامية (بما في ذلك تلك التي تمت مناقشتها أعلاه) ببعض الخصائص التي تحملها، مثل المعادلة التفاضلية.[35] على سبيل المثال، الدالة الأسية هي الدالة التي يساوي مشتقها نفسه دائمًا، وتفرض قيمة 1 عند الأصل. يمكن مع ذلك تعريف دالة تحليلية تعريفاً وافياً باستعمال بمتسلسلة تايلور الخاصة بها.
تُستخدم متسلسلة تايلور لتعريف الدوال و"المؤثرات" في ميادين متنوعة من الرياضيات. على وجه الخصوص، هذا صحيح في الميادين التي تتعطل فيها التعريفات التقليدية للدوال. على سبيل المثال، باستخدام متسلسلة تايلور، يمكن أن يمدد الدوال التحليلية إلى مجموعات من المصفوفات والمؤثرات، مثل الدالة الأسية لمصفوفة[الإنجليزية] أو لوغاريتم مصفوفة[الإنجليزية].[36]
يكون من الأنسب العمل مباشرةً مع متسلسلة القوى نفسها في الميادين أخرى، مثل التحليل الشكلي.[ملاحظة 1] وهكذا يمكن تعريف حل معادلة تفاضلية على أنه متسلسلة قوى، والتي نأمل أن نثبت أنها متسلسلة تايلور للحل المطلوب.
متسلسلة تايلور لدالة متعددة المتغيرات
يمكن أيضًا تعميم متسلسلة تايلور على دالة ذات أكثر من متغير باستخدام:[37][38]
على سبيل المثال، بالنسبة للدالة التي تعتمد على متغيرين x و y، متسلسلة تايلور إلى غاية الدرجة الثانية حول النقطة (a, b) هي:
تُمكِّن متسلسلة فورييه المثلثية من التعبير عن دالة دورية (أو دالة معرفة على فترة مغلقة [a,b]) على شكل مجموع لانهائي من الدوال المثلثية (الجيبوجيب التمام). وبهذا المعنى، فإن متسلسلة فورييه مماثلة لمتسلسلة تايلور، لأن الأخيرة تسمح بتعبير عن دالة مجموعًا لانهائيًّأ من الأسس. ومع ذلك، تختلف المتسلسلتان عن بعضهما البعض في العديد من القضايا ذات الصلة:
التدويرات المحدودة لمتسلسلة تايلور للدالة f (x) حول النقطة x = a كلها تساوي تمامًا f عند a. على النقيض من ذلك، تُحسب متسلسلة فورييه بمكاملة على فترة كاملة، لذلك لا توجد عمومًا أية نقطة حيث تكون جميع التدويرات المحدودة للمتسلسلة دقيقة.[40]
يتطلب حساب متسلسلة تايلور معرفة الدالة في جوار صغير اختياري من نقطة، في حين أن حساب متسلسلة فورييه يتطلب معرفة الدالة في كامل مجالها. بمعنى ما يمكن القول أن متسلسلة تايلور "محلية" ومتسلسلة فورييه "عامة".[41]
تُعَرَّف متسلسلة تايلور لدالة لها العديد من المشتقات اللانهائية عند نقطة واحدة، بينما تُعَرَّف متسلسلة فورييه لأي دالة قابلة للتكامل. على وجه الخصوص، لا يمكن أن تكون الدالة دائمًا قابلة للاشتقاق في أي مكان. (على سبيل المثال، يمكن أن تكون f (x)دالة فايرشتراس.)[41]
تقارب كلتا المتسلسلتين له خصائص مختلفة جدًا. حتى إذا كانت متسلسلة تايلور لها نصف قطر تقارب موجب، فقد لا تتوافق المتسلسلة الناتجة مع الدالة؛ ولكن إذا كانت الدالة تحليلية، فإن المتسلسلة تتقارب نقطة بنقطة نحو الدالة، وبشكل منتظم في كل مجموعة جزئية متراصة من فترة التقارب. فيما يتعلق بسلسلة فورييه، إذا كانت الدالة قابلة للتكامل تربيعيا، فإن المتسلسلة تتقارب في متوسط تربيعي، ولكن هناك حاجة إلى متطلبات إضافية لضمان التقارب النقطي أو المنتظم (على سبيل المثال، إذا كانت الدالة دورية ومن الصنف C1، فإن التقارب يكون منتظمًا).[42]
أخيرًا، من الناحية العملية، يريد الشخص تقريب الدالة بعدد محدود من الحدود، على سبيل المثال بكثير الحدود لتايلور أو مجموع جزئي للمتسلسلة المثلثية، على الترتيب. في حالة متسلسلة تايلور، يكون الخطأ صغيرًا جدًا في جوار النقطة التي يُحسب فيها، في حين أنه قد يكون كبيرًا جدًا في نقطة بعيدة. في حالة متسلسلة فورييه، يتوزع الخطأ على طول مجال الدالة.
ملحق: مسرد المصطلحات الإنجليزية
مَسرد المفردات وفق الترتيب الأبجدي الإنجليزي
A
جمع
Addition
معادلة جبرية
Algebraic equation
دالة تحليلية
Analytic function
تقريب
Approximation
قوس القاطع
Arcsecant
مدخل
Argument
قوس الظل
Arctangent
B
عدد برنولي
Bernoulli number
دالة بيسل
Bessel function
تدوين O الكبير
Big O notation
معامل ثنائي الحد
Binomial coefficient
متسلسلة ثنائي الحد
Binomial series
توطئة بوريل
Borel's lemma
C
حساب التفاضل والتكامل
Calculus
شكل تشيبيشيف
Chebyshev form
صنف
Class
خوارزمية كلنشو
Clenshaw algorithm
معامل
Coefficient
مجموعة متراصة
Compact set
تكامل إهليلجي تام من النوع الأول/الثاني
Complete elliptic integral of the first/second kind
D. T. Whiteside (1983). "The Mathematical Papers of Isaac Newton, vol. VIII : 1697-1722, ed. by D. T. Whiteside with the assist. in publ. of A. Prag". Revue d'Histoire des Sciences (بالفرنسية). 36 (2): 186–188. ISSN:0151-4105. OCLC:732527453. QID:Q122764742.
السيد محمد أبو دهب خضيري؛ طاهر عبد الحميد نوفل (2020). مقدمة في المعادلات التفاضلية. مراجعة: عبد المعطي محمد عبد الله (ط. 1). سوهاج: دار ماستر للنشر. ISBN:978-977-85571-1-4. QID:Q122642210.
بالإنكليزية
Turnbull (1939), H. W. Turnbull (ed.), James Gregory. Tercentenary memorial volume: containing his correspondence with John Collins and his hitherto unpublished mathematical manuscripts, together with addresses and essays communicated to the Royal Society of Edinburgh, July 4, 1938 (بالإنجليزية), London: George Bell & Sons, OCLC:7162848, QID:Q42191653{{استشهاد}}: صيانة الاستشهاد: ref duplicates default (link)
V. Ramesh Babu; S. Ranganadham; S. Sreenadh (2014). Fourier Series And Integral Transforms (بالإنجليزية). Uttar Pradesh: S. Chand Publishing. ISBN:978-93-84319-09-0. QID:Q122642097.