اختبار المشتقة الثانيةفي علم التفاضل، يعد اختبار المشتقة الثانية معيار ذا أهمية لمعرفة نوع النقطة الساكنة للدالة (عظمى، صغرى أم انقلاب) عند النقطة المعنية.[1] ينص الفحص على أنه: إذا كانت الدالة f قابلة للاشتقاق مرتين عند نقطة ساكنة xبمعنى أنه , فإن:
في الحالة الأخيرة، بالرغم من أن الدالة قد يكون لها قيمة عظمى محلية أو صغرى محلية عند x, لأن الدالة «مسطحة» بما يكفي (أي أن ) القيم العظمى والصغرىتظل غير محسوسة بالاشتقاق الثاني. في حالة كهذه يفضل اختبار المشتقة الثالثة. النقطة عند تكون نقطة انقلاب إذا تغير تقعرها من أي من الجانبين. عل سبيل المثال, (0,0) هي نقطة انقلاب على لأن , و و. مبرهنة اختبار المشتقة الثانيةلنفرض أن (إثبات أن متصلة). حينئذ بالتالي، من أجلh صغيرة بما يكفي نحصل على ما يعني أن
الآن، من اختبار المشتقة الأولى نعلم أن لها نقطة محلية صغرى عند . انظر أيضاالمصادر
|