Kynea數
Kynea數(英語:Kynea number)是以下形式的整數:
等效公式為
這表示Kynea數是4的n次冪加上第n+1个梅森數。 克萊因斯·伊曼紐爾(Cletus Emmanuel)發現了Kynea數,他以自己女儿的名字(Kynea)去命名。[1] Kynea數列: 性質第n個Kynea數的二進制表示是單個前導1,後跟n-1個連續的零,然後是n+1個連續的1。或者代數地表示: 例如,二進制下23是10111,79是1001111,依此類推。第n個Kynea數與第n個Carol數之間的差是。 Kynea素数
每第1,4,7,10……个Kynea数为7的倍数,因此如果一个Kynea数是素数,那么其指数必定不为的形式。已知的头几个Kynea素数为7, 23, 79, 1087, 66047, 263167, 16785407 (OEIS數列A091514),其指数为1, 2, 3, 5, 8, 9, 12, 15, 17, 18, 21, 23, 27, 32, 51, 65, 87, 180, 242, 467, ... (OEIS數列A091513)。 截止2019年7月,已知的最大Kynea素数为第852770个Kynea数,是一个513419位数[2][3]。此数由Ryan Propper用CKSieve和PrimeFormGW软件发现。这也是第51个Kynea素数。 參考資料
外部連結 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia