畢達哥拉斯質數
畢達哥拉斯質數是指可以表示為4n + 1形式的質數,若直角三角形的三邊均為整數,斜邊為質數,其斜邊的邊長即為畢達哥拉斯質數。 前幾個畢達哥拉斯質數為 費馬平方和定理陳述,畢達哥拉斯質數可以表示為二個平方數的和,其他質數除了2以外(2=12+12)都不能表示為二個平方數的和。畢達哥拉斯質數及2會在高斯整數的範數中出現,其他的質數不會是高斯整數的範數。 畢達哥拉斯質數可以表示為一個奇數的平方數与一個偶數的平方數的和:畢達哥拉斯質數是可以表示為a2+4b2形式的質數。 依照二次互反律陳述,若p及q為奇質數,其中至少有一個為畢達哥拉斯質數,則 p是模q的二次剩餘的充份必要條件是q是模p的二次剩餘 。相反的,若p及q都不是畢達哥拉斯質數,則p是模q的二次剩餘的充份必要條件是q不是模p的二次剩餘。−1是是模p的二次剩餘的充份必要條件是p是畢達哥拉斯質數(或2)。 在p為畢達哥拉斯質數的域Z/p中,多項式x^2 = -1有二個解。
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia