歐幾里得數歐幾里得數都是整數,其形式為En = pn + 1,其中pn 是pn的質數階乘 。命名是由古希臘數學家歐幾里德來命名。 人們有時錯誤地說,歐幾里德的著名的歐幾里得定理:證明質數是無限的需要依賴於這些數字。[1]事實上,歐幾里德的證明並沒有假設一個有限集合包含的所有質數的存在。相反,他說: consider any finite set of primes (not necessarily the first n primes; e.g. it could have been the set {3, 11, 47}), and then went on from there to the conclusion that at least one prime exists that is not in that set. 意思是:考慮任何素數的有限集合(不一定是前n个素數,例如,它可能是集合{3,11,47}),然後從這兩個方面得到這樣的結論:至少存在一個質數不是在該集合。[1] (页面存档备份,存于互联网档案馆)[3].[4] 前幾個歐幾里得數是為: 未解決的數學問題:是否存在無限多個歐幾里得素數?
目前還不知道是否存在無限多個歐幾里得素數 E6 = 13# + 1 = 30031 = 59 × 509是第一個歐幾里得合數
參考文獻
參見 |