Em matemática, a matriz Hessiana de uma função "f" de n variáveis é a matriz quadrada com "n" colunas e "n" linhas (n X n) das derivadas parciais de segunda ordem da função. Por isto, esta matriz descreve a curvatura local da função "f". Matrizes Hessianas são usadas em larga escala em problemas de otimização que não usam métodos Newtonianos.
A derivada da derivada (=derivada de segunda ordem): primeiro tomou-se a derivada da função "f" em relação à variável e depois derivou-se esta derivada em relação à variável .[1]
Se todas as derivadas parciais de "f" existirem, então a matriz hessiana de f é a matriz quadrada das derivadas de segunda ordem de f:[2]
Uma outra definição equivalente é: dado o vetorgradiente nX1, a matriz hessiana é sua derivada.[3] Por isso, há outras representações para a mesma matriz hessiana H acima:[4][5]
Propriedades da matriz hessiana
Dimensão: Como uma função com "n" variáveis tem n2derivadas parciais de segunda ordem, a matriz hessiana também terá n2 elementos. Por isto, ela sempre será uma matriz quadrada de dimensão nXn.
Fora da diagonal principal, uma matriz hessiana é composta por derivadas mistas de f.
Para variáveis genéricas xi e xj, esta igualdade pode ser rescrita como:
Pontos Críticos e Discriminante
Se o gradiente da funçãof é zero em um ponto x que pertence ao domínio da função, então f em x possui um ponto crítico. O determinante do hessiano em x é chamado de discriminante em x. Se este determinante for zero, x será chamado de ponto crítico degenerado de f. Do contrário, o ponto não será degenerado.
Concavidade de funções
A matriz hessiana é útil para identificar a concavidade de funções duas vezes diferenciáveis. Seja uma função de n variáveis com derivadas parciais de primeira e segunda ordem contínuas em um conjunto convexo aberto S.
A função é côncava (e portanto semicôncava também) se e somente se a matriz hessiana for semidefinida negativa
Se a matriz hessiana é definida negativa, então a função é estritamente côncava. Isso não significa, no entanto, que se a função for estritamente côncava, então H(f) é negativa definida para todo x pertencente a S[7].
Se a matriz hessiana for definida positiva, então a função é estritamente convexa
A função é convexa se a matriz hessiana é semidefinida positiva
Dada a função a condição necessária para que um determinado ponto seja um ponto crítico é que todas as derivadas parciais, calculadas naquele ponto específico, sejam iguais a zero.[6] No entanto, para definir se este ponto crítico é um ponto de máximo, mínimo ou de sela, é preciso calcular o determinante da matriz hessiana e seus menores principais. Para isso, pode-se seguir os seguintes passos:
Calcular as "n" derivadas de primeira ordem da função f. O resultado serão "n" funções das variáveis do vetor n × 1
Igualar cada uma das "n" funções do item 1 a zero. Com isso, serão descobertos valores para cada uma das variáveis Chamaremos estes valores, cujas coordenadas compõem o ponto crítico, de Igualmente, o vetor nX1 destes valores (números) será chamado de Reservar este ponto crítico.
A partir das derivadas de primeira ordem calculadas no item 1, calcular as derivadas de segunda ordem da função f e montar a matriz hessiana nXn. Notar que é possível que muitos elementos desta matriz sejam função das variáveis
Substitua as variáveis presentes na matriz hessiana montada no item 3, pelos valores correspondentes do ponto crítico, ou seja, pelos valores do vetor A matriz resultante não terá mais variáveis, somente números. Por exemplo, a derivada da função f em relação à variável por sua vez derivada em relação à variável calculada para o vetor será representado por e significa um número.
A partir da matriz resultante do item 4, calcular os menores principais. Os resultados serão números.
...
=determinante da matriz hessiana calculada no item 4.
↑MAS-COLELL, Andreu; WHINSTON, Michael D, e GREEN, Jerry R. Microeconomic Theory. Oxford University press, 1995. ISBN 978-0-19-507340-9. Mathematiocal Appendix, "M.A Matrix Notation for Derivatives", p. 927.
SIMON, Carl P., e BLUME, Lawrence. Mátemática para economistas. Porto Alegre: Bookman, 2004. Reimpressão 2008. ISBN 978-85-363-0307-9.
INTRILIGATOR, Michael D. Mathematical Optimization and Economic Theory. 1971, Prentice-Hall. Inc. Englewood Cliffs, N.J. printed in the United states of America 13-561753-7. Library of Congress Catalog Card Number: 72-127059. Appendix B, "Matrices".
CHIANG, Alpha C. Fundamental Methods in Mathematical Economics. 3ª edição. McGraw-Hill, Inc. 1984. ISBN 0-07-010813-7. Seção 11.4, "Objective functions with more than two variables".