Gradiente Nota: Se procura Gradiente, a empresa e marca, veja Gradiente (empresa).
No cálculo vetorial o gradiente (ou vetor gradiente) é um vetor que indica o sentido e a direção na qual, por deslocamento a partir do ponto especificado, obtém-se o maior incremento possível no valor de uma grandeza a partir da qual se define um campo escalar para o espaço em consideração. Constrói-se assim, a partir do campo escalar e de um operador denominado operador gradiente, um campo vetorial, que atrela a cada ponto do espaço o correspondente vetor gradiente para a grandeza em consideração. O módulo do vetor gradiente indica a taxa de variação da grandeza escalar com relação à distância movida quando desloca-se na direção e sentido do vetor gradiente (deslocamentos infinitesimais). O campo vetorial e o operador gradiente possuem diversas aplicações em matemática e ciências naturais, indo desde o cálculo de derivadas direcionais à maximização das mesmas. A exemplo, a partir do gradiente do potencial elétrico determina-se o campo elétrico; e a partir do gradiente da energia potencial determina-se o campo de força associado. Por exemplo, o gradiente da topografia H de um terreno, também chamado de declividade, é dado por: O símbolo , isto é, nabla, é a notação do operador gradiente. Motivação: gradiente de temperaturaGradiente em uma única direção (derivada)Suponha que tenhamos uma viga retilínea cujas extremidades estão em contato com duas paredes a temperaturas diferentes, uma à esquerda e outra à direita, sendo a parede à direita a mais quente. Observamos que a temperatura da viga não é constante em relação ao espaço, e que cresce da esquerda para a direita ao longo de seu comprimento. Definindo a coordenada para a extremidade à esquerda e para a extremidade à direita, definimos a temperatura em uma posição qualquer (variável ) da viga como uma função . Entre dois pontos muito próximos, distantes de um comprimento , teremos uma respectiva variação de temperatura . Em uma situação unidimensional, a razão entre essas grandezas fornece o gradiente, denotado por:Note que, para apenas uma dimensão, a noção de derivada e gradiente convergem. Em condução térmica, o gradiente de temperatura é responsável pelo surgimento de um fluxo de calor, segundo a Lei de Fourier, que, para condução unidimensional, é representada por:onde corresponde ao fluxo de calor, em , e corresponde à condutividade térmica do material, em . O sinal negativo indica que o calor fluirá do corpo mais quente em direção ao corpo mais frio. Gradiente de temperatura no espaço tridimensionalNa prática, a temperatura da viga varia em função das coordenadas no espaço. Estabelecendo um ponto qualquer , teremos, em uma situação mais próxima da realidade, uma função que descreve a temperatura nas coordenadas de . Se nos deslocarmos em apenas um eixo do espaço, podemos escrever a função considerando esse deslocamento. Para uma variação da coordenada , por exemplo, teremos a relação:Seguindo a mesma lógica, para um deslocamento entre um ponto qualquer e outro que chamaremos de , teremos um vetor , havendo mudança da temperatura de para . Assim, teremos a relação:É possível simplificar essa relação definindo um vetor gradiente de temperatura , no qual cada componente indica a variação da temperatura em cada coordenada:Assim, podemos representar a mudança de temperatura da posição para por:sendo o produto escalar entre o vetor gradiente e o vetor . Da mesma forma que no caso unidimensional, o vetor gradiente de temperatura terá orientação partindo do mais frio em direção ao mais quente. Assim, no contexto de transferência de calor, teremos a Lei de Fourier aplicada ao sistema tridimensional, representada por:Novamente, corresponde ao fluxo de calor e corresponde à condutividade térmica do material. Perceba que, como o calor flui da região de temperatura mais alta para uma de temperatura mais baixa, os vetores fluxo de calor e gradiente de temperatura terão sentidos contrários.[1] DefiniçãoO vetor gradiente ou simplesmente gradiente de um campo escalar é determinado via ênupla ordenada definida por: ou, via notação de soma de Euler, por: onde são os vetores unitários ortogonais que definem a base a partir da qual se coordena o espaço e representa o respectivo operador derivada parcial. Já na notação de soma de Einstein, onde índices repetidos no mesmo fator implicam somatório, para o campo escalar φ: O símbolo nabla foi introduzido por William Hamilton e rapidamente assimilado pela comunidade científica: No entanto, por abuso de linguagem, é comum não se indicar a "seta" de vector e a notação poderá torna-se em: O gradiente também pode ser generalizado em ordem – se fornecemos um campo vectorial obtemos um campo tensorial. ExemploPara a função escalar tem-se, na base cartesiana que fornece por resposta a ênupla ou explicitamente para qualquer ponto definido pelas coordenadas , restando apenas a substituição dos respectivos valores x, y e z na expressão acima. ExpressõesPara todo campo escalar diferenciável em função do espaço cartesiano temos que: O gradiente é a derivada de um campo em função do espaço: Em uma só dimensão o gradiente de uma função que só depende do espaço: PropriedadesLinearidadeO gradiente é linear: Onde é um corpo constante. Lei de LeibnizO gradiente segue a Lei de Leibniz na multiplicação: E na divisão: Ortogonalidade às curvas de nívelO vetor gradiente sempre será ortogonal às curvas de nível (veja no artigo "Conjunto de nível"). Seja uma função definida em e diferenciável em todo seu domínio. Seja o conjunto onde x e y são funções de um parâmetro t tal que . Então, temos: (diferenciando com relação a t pela regra da cadeia)
A equação final pode ser interpretada como o produto escalar do gradiente de f por um vector tangente a f em , logo os dois são perpendiculares entre si. Teorema do gradienteO gradiente é revertido pela integral de linha de acordo com o teorema do gradiente, que é análogo ao teorema fundamental do cálculo: Derivada direcionalA derivada direcional é um escalar que representa a derivada de um campo escalar ao longo de um versor (no caso abaixo,). Analiticamente, a derivada direcional de dada f(x,y,z) (função escalar), é a taxa de variação instantânea de f em relação à distância na direção e sentido .[3] Assim, podemos tirar algumas observações[4] a partir do produto escalar entre o gradiente de f e o versor : 1. Se o ângulo entre os vetores e , denotado por θ, for igual a zero. então teremos que a derivada direcional é máxima, e será igual ao módulo do gradiente de f(x,y,z), já que: 2. Se o ângulo θ for igual a , então a derivada direcional terá seu valor mínimo e igual a menos o módulo do gradiente de f(x,y,z): 3. Se f(x,y,z) representar uma curva de nível em que f(x,y,z) = k, onde k é uma constante, e se o vetor for tangente à tal curva de nível, então o valor da derivada direcional é nula, pois será perpendicular a , e normal à curva de nível. Neste caso: Sistemas de coordenadasO gradiente é escrito nos diferentes sistemas de coordenadas tridimensionais nas seguintes formas: Coordenadas cartesianasPara coordenadas espaciais x, y e z. Coordenadas cilíndricas circularesOnde representa a distância ao eixo z, é o ângulo (tomado, em geral sobre o plano z=0 em relação ao eixo x) e z. Coordenadas esféricasOnde representa a distância à origem, é o ângulo entre a reta que liga o ponto à origem e o eixo z e é o ângulo formado pela projeção da reta que liga o ponto à origem no plano z=0 e o eixo x. Gradiente na físicaO conceito de gradiente na física está fortemente relacionado aos conceitos de campo conservativo e de função potencial, de tal forma que também na matemática se define campo vetorial conservativo.[4] Na física campos conservativos são campos que conservam a energia do sistema, isto é, campos onde não há dissipação de energia. A função vetorial é um campo vetorial conservativo se existe uma função escalar , chamada função potencial, tal que: . Sendo assim, dada uma função potencial ou uma função potencial do tipo , basta calcular o gradiente para encontrar o campo vetorial conservativo associado a . Como é uma função de x, y, z então: Se é uma função implícita de x, y, z através de , ou seja, é necessário usar a regra da cadeia para calcular o respectivo gradiente. Potenciais deste tipo são chamados de potenciais centrais. Cálculo do gradiente de potenciais centraisMuitos modelos de potenciais físicos são centrais, sendo assim de grande importância saber como realizar o cálculo deste tipo. Através da regra da cadeia é possível ver que: Levando em conta que tem-se que: Igualmente para as outras variáveis do gradiente:
Assim, com a soma das três derivadas, temos que : Esta última fórmula é a preferencial para quando se tem potenciais centrais, pois ela nos fornece o campo gradiente com apenas uma derivação. Aplicabilidade em campos escalaresHá três leis empíricas conhecidas como Lei de Fick, Lei de Fourier e Lei de Ohm ás quais são expressas em termos de campos gradientes. A leis citadas regem os chamados "fenômenos de transporte" da Física. Sendo que a Lei de Fick rege o transporte de massa, a Lei de Fourier o do calor e a Lei de Ohm o de cargo.[4] São expressas como: Ao observar percebe-se que as três leis relacionam um campo vetorial com o gradiente de um campo escalar. A (1) é a Lei de Fick que rege a difusão de substâncias em meios contínuos. A função vetorial indicada por é chamada de densidade do fluido. é um vetor na direção do escoamento e de módulo igual à quantidade de substâncias que atravessam uma unidade de área normal à direção do escoamento, na unidade de tempo. Definição matemática: , em que é o campo escalar que descreve a densidade do fluido, o campo vetorial que representa a velocidade do fluido. A constante D é chamada de constante de difusão e depende do meio. A (2) expressão é chamada de Lei de Fourier e rege a condução térmica. A função vetorial indicada por é chamada densidade de corrente de calor. Definição matemática: , onde Q é a quantidade de calor, V o volume e a velocidade de escoamento do calor. Sendo todas grandezas em função das coordenadas espaciais e e do tempo. A constante é a condutividade térmica do meio. A (3) expressão traduz a Lei de Ohm, sendo a densidade de corrente elétrica, a condutividade elétrica e o potencial elétrico. A definição da função vetorial é análoga à definição de densidade de corrente usada na Lei de Fick, só que aqui ao invés de ter transporte de massa temos transporte de carga. Sendo estas leis, juntamente com a equação de continuidade, base para deduzir as equações de difusão, do calor e, no caso do escoamento estacionário, a equação de Laplace . Noção intuitiva de gradienteO gradiente é o vetor que aponta para onde a grandeza resultante da função tem seu maior crescimento.[5] Gradientes de tensãoOs gradientes de tensão em redes elétricas são, depois dos transientes, os maiores causadores de danos em circuitos eletro-eletrônicos. O retorno da energia elétrica numa linha de transmissão longa, após uma interrupção da mesma, faz-se acompanhar por transientes de tensão elevada até à estabilização do circuito. Simultaneamente, manifesta-se na rede um movimento oscilatório de baixa frequência, composto por gradientes positivos e negativos, denominados harmônicos, que fazem elevar e reduzir a tensão, acima e abaixo do seu valor nominal. Ver tambémReferências
Bibliografia
|