置換可能素数
置換可能素数(ちかんかのうそすう、英語: permutable prime)は、与えられた基数において、任意の桁の数字を置換しても素数となる素数のことである。この素数を最初に研究したハンズ・エゴン・リチャートはこれを"permutable primes"(置換可能素数)と呼んだ[1]が、後に"absolute primes"(絶対素数)とも呼ばれた[2]。また、"anagrammatic prime"(アナグラム素数)とも呼ばれる。 基数10においては、49,081桁以下の全ての置換可能素数が判明している。
上記から、置換により同じ数字となるもののうち最小のもの以外を除くと、以下の16個となる。
ここで、 Rn = は、n個の1(基数10)だけで構成される数(レピュニット数)である。全てのレピュニット素数は上記に定義した置換可能素数であるが、定義によっては少なくとも2つの異なる桁が必要となる[3]。 全ての2桁以上の置換可能素数は1,3,7,9で構成されている。これは、2以外の偶数は素数ではなく、5以外の素数は5で割り切れないからである。1,3,7,9の4つの数字のうちの3つを含む置換可能素数が存在しないこと、1,3,7,9から選択された2つの数字の各々が2つ以上から構成される置換可能素数が存在しないことは証明されている[4]。 3 < n < 6·10175となるn桁のレピュニット以外の置換可能素数は存在しない[1]。上記に挙げた以外のレピュニットでない置換可能素数は存在しないと予想されている。
脚注
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia