フォーチュン数フォーチュン数(フォーチュンすう、英: Fortunate number)は、ある自然数 n に対して、pn# + m が素数となるような最小の整数 m (ただし 1<m)のことである(pn# は素数階乗)。レオ・フォーチュンに因む。 例として、7番目のフォーチュン数を算出する。始めに最初の7つの素数の積 p7# = 510510 (=2×3×5×7×11×13×17) を考える。510510 に 2 を加えると偶数になり、3 を加えると3の倍数となる。18 までの全ての自然数は除外され、そして 19 を加えた 510529 は素数となる。よって 19 はフォーチュン数である。n 番目のフォーチュン数は、常に n 番目の素数 pn を上回る。 フォーチュン数は以下のように続く。
フォーチュン数を整列し重複を除くと、
人類学者レオ・フォーチュンは、すべてのフォーチュン数は素数であると予想した。フォーチュン素数は、素数であるフォーチュン数のことである。2009年現在、すべての既知のフォーチュン数はフォーチュン素数である。 関連項目
参考
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia