作用素位相数学の関数解析学の分野では、ヒルベルト空間 H 上の有界線形作用素の環 B(H) に対して与えられる標準的な作用素位相(さようそいそう、英: operator topology)がいくつか存在する。 導入{Tn} をヒルベルト空間 H 上の線型作用素の列とする。Tn が H 内である作用素 T に収束するということについて考える。これには次のようないくつかの異なる意味がある:
これらのすべての概念は、ヒルベルト空間 H の代わりにバナッハ空間を考えても意味を持ち、有用である。 B(H) 上の位相上述のものの他にも、B(H) 上で定義できる位相は多く存在する。これらの位相はすべて局所凸であり、半ノルムの族によって定義される。 解析学において、位相は、多くの開集合を持つなら強と呼ばれ、少ない開集合を持つなら弱と呼ばれる。したがって、それらに対応する収束の種類はそれぞれ、強と弱になる。 バナッハ空間 B(H) は、双対が B(H) であるようなトレース級作用素からなる(唯一つの)前双対 B(H)* を持つ。その前双対において正である w に対する半ノルム pw(x) は (w, x*x)1/2 で定義される。 B がベクトル空間 A 上の線型写像からなるベクトル空間であるとき、B のすべての元が連続であるような A 上の最も弱い位相として、σ(A, B) が定義される。
関連項目参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia