極集合函数解析学と関連する数学の分野において、あるベクトル空間の与えられた部分集合の極集合(きょくしゅうごう、英: polar set)とは、その双対空間の中のある集合のことを言う。 双対組 が与えられたとき、 のある部分集合 の極集合あるいは極とは、次で定義される 内の集合 のことを言う。 の部分集合 の双極(bipolar)とは、 の極集合のことを言う。それは と表記される 内の集合である。 性質
幾何学幾何学において、極集合は点と平面の間の双対性を意味することもある。特に、ある点 の極集合は、 を満たす点 の集合で与えられ、それは極超平面(polar hyperplane)であり、超平面に対する双対関係はその極を与える。 関連項目参考文献
ポテンシャル論における極集合に関する文献: Ransford, Thomas: Potential Theory in the Complex Plane, London Mathematical Society Student Texts 28, CUP, 1995, pp. 55-58. |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia