双極定理数学において、双極定理(そうきょくていり、英: bipolar theorem)とは、錐がその双極と等しいための必要十分条件を与える凸解析の一定理である。双極定理は、フェンシェル=モローの定理の特別な場合と見なすことが出来る[1]:76–77。 定理の内容ある線型空間 内の任意の空でない集合 に対し、双極錐 は次で与えられる。 特別な場合が空でない閉凸錐であるための必要十分条件は、 であるときに であることである。ここで は正の双対錐を表す[2][3]。 あるいはより一般に、 が凸錐であるなら双極錐は次で与えられる。 フェンシェル=モローの定理との関係はある錐 に対する指示函数とする。このとき、凸共役 は に対する支持函数であり、 である。したがって、 であるための必要十分条件は、 である[1]:54[3]。 参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia